olas-prediction-live-dashboard / scripts /update_nr_mech_calls.py
rosacastillo's picture
new non-agent graphs
e51ae04
raw
history blame
2.03 kB
import pandas as pd
from profitability import DATA_DIR, DEFAULT_MECH_FEE, summary_analyse
from tqdm import tqdm
def update_roi(row: pd.DataFrame) -> float:
new_value = row.net_earnings / (
row.collateral_amount
+ row.trade_fee_amount
+ row.num_mech_calls * DEFAULT_MECH_FEE
)
return new_value
def update_trade_nr_mech_calls(non_agents: bool = False):
try:
all_trades_df = pd.read_parquet(DATA_DIR / "all_trades_profitability.parquet")
tools = pd.read_parquet(DATA_DIR / "tools.parquet")
except Exception as e:
print(f"Error reading the profitability and tools parquet files")
traders = list(all_trades_df.trader_address.unique())
if non_agents:
traders = list(
all_trades_df.loc[
all_trades_df["staking"] == "non_agent"
].trader_address.unique()
)
print("before updating")
print(
all_trades_df.loc[
all_trades_df["staking"] == "non_agent"
].num_mech_calls.describe()
)
for trader in tqdm(traders, desc=f"Updating Traders mech calls", unit="traders"):
tools_usage = tools[tools["trader_address"] == trader]
if len(tools_usage) == 0:
tqdm.write(f"trader with no tools usage found {trader}")
all_trades_df.loc[
all_trades_df["trader_address"] == trader, "nr_mech_calls"
] = 0
# update roi
all_trades_df["roi"] = all_trades_df.apply(lambda x: update_roi(x), axis=1)
print("after updating")
print(
all_trades_df.loc[
all_trades_df["staking"] == "non_agent"
].num_mech_calls.describe()
)
# saving
all_trades_df.to_parquet(DATA_DIR / "all_trades_profitability.parquet", index=False)
print("Summarising trades...")
summary_df = summary_analyse(all_trades_df)
summary_df.to_parquet(DATA_DIR / "summary_profitability.parquet", index=False)
if __name__ == "__main__":
update_trade_nr_mech_calls(non_agents=True)