Spaces:
Running
Running
from typing import Union | |
from torch import Tensor | |
from .freeinit import FreeInitFilter | |
from .sample_settings import (FreeInitOptions, IterationOptions, | |
NoiseLayerAdd, NoiseLayerAddWeighted, NoiseLayerGroup, NoiseLayerReplace, NoiseLayerType, | |
SeedNoiseGeneration, SampleSettings, CustomCFGKeyframeGroup, CustomCFGKeyframe) | |
from .utils_model import BIGMIN, BIGMAX, SigmaSchedule | |
class SampleSettingsNode: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"batch_offset": ("INT", {"default": 0, "min": 0, "max": BIGMAX}), | |
"noise_type": (NoiseLayerType.LIST,), | |
"seed_gen": (SeedNoiseGeneration.LIST,), | |
"seed_offset": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX}), | |
}, | |
"optional": { | |
"noise_layers": ("NOISE_LAYERS",), | |
"iteration_opts": ("ITERATION_OPTS",), | |
"seed_override": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "forceInput": True}), | |
"adapt_denoise_steps": ("BOOLEAN", {"default": False},), | |
"custom_cfg": ("CUSTOM_CFG",), | |
"sigma_schedule": ("SIGMA_SCHEDULE",), | |
} | |
} | |
RETURN_TYPES = ("SAMPLE_SETTINGS",) | |
RETURN_NAMES = ("settings",) | |
CATEGORY = "Animate Diff ππ π " | |
FUNCTION = "create_settings" | |
def create_settings(self, batch_offset: int, noise_type: str, seed_gen: str, seed_offset: int, noise_layers: NoiseLayerGroup=None, | |
iteration_opts: IterationOptions=None, seed_override: int=None, adapt_denoise_steps=False, | |
custom_cfg: CustomCFGKeyframeGroup=None, sigma_schedule: SigmaSchedule=None): | |
sampling_settings = SampleSettings(batch_offset=batch_offset, noise_type=noise_type, seed_gen=seed_gen, seed_offset=seed_offset, noise_layers=noise_layers, | |
iteration_opts=iteration_opts, seed_override=seed_override, adapt_denoise_steps=adapt_denoise_steps, | |
custom_cfg=custom_cfg, sigma_schedule=sigma_schedule) | |
return (sampling_settings,) | |
class NoiseLayerReplaceNode: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"batch_offset": ("INT", {"default": 0, "min": 0, "max": BIGMAX}), | |
"noise_type": (NoiseLayerType.LIST,), | |
"seed_gen_override": (SeedNoiseGeneration.LIST_WITH_OVERRIDE,), | |
"seed_offset": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX}), | |
}, | |
"optional": { | |
"prev_noise_layers": ("NOISE_LAYERS",), | |
"mask_optional": ("MASK",), | |
"seed_override": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "forceInput": True}), | |
} | |
} | |
RETURN_TYPES = ("NOISE_LAYERS",) | |
CATEGORY = "Animate Diff ππ π /noise layers" | |
FUNCTION = "create_layers" | |
def create_layers(self, batch_offset: int, noise_type: str, seed_gen_override: str, seed_offset: int, | |
prev_noise_layers: NoiseLayerGroup=None, mask_optional: Tensor=None, seed_override: int=None,): | |
# prepare prev_noise_layers | |
if prev_noise_layers is None: | |
prev_noise_layers = NoiseLayerGroup() | |
prev_noise_layers = prev_noise_layers.clone() | |
# create layer | |
layer = NoiseLayerReplace(noise_type=noise_type, batch_offset=batch_offset, seed_gen_override=seed_gen_override, seed_offset=seed_offset, | |
seed_override=seed_override, mask=mask_optional) | |
prev_noise_layers.add_to_start(layer) | |
return (prev_noise_layers,) | |
class NoiseLayerAddNode: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"batch_offset": ("INT", {"default": 0, "min": 0, "max": BIGMAX}), | |
"noise_type": (NoiseLayerType.LIST,), | |
"seed_gen_override": (SeedNoiseGeneration.LIST_WITH_OVERRIDE,), | |
"seed_offset": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX}), | |
"noise_weight": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 10.0, "step": 0.001}), | |
}, | |
"optional": { | |
"prev_noise_layers": ("NOISE_LAYERS",), | |
"mask_optional": ("MASK",), | |
"seed_override": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "forceInput": True}), | |
} | |
} | |
RETURN_TYPES = ("NOISE_LAYERS",) | |
CATEGORY = "Animate Diff ππ π /noise layers" | |
FUNCTION = "create_layers" | |
def create_layers(self, batch_offset: int, noise_type: str, seed_gen_override: str, seed_offset: int, | |
noise_weight: float, | |
prev_noise_layers: NoiseLayerGroup=None, mask_optional: Tensor=None, seed_override: int=None,): | |
# prepare prev_noise_layers | |
if prev_noise_layers is None: | |
prev_noise_layers = NoiseLayerGroup() | |
prev_noise_layers = prev_noise_layers.clone() | |
# create layer | |
layer = NoiseLayerAdd(noise_type=noise_type, batch_offset=batch_offset, seed_gen_override=seed_gen_override, seed_offset=seed_offset, | |
seed_override=seed_override, mask=mask_optional, | |
noise_weight=noise_weight) | |
prev_noise_layers.add_to_start(layer) | |
return (prev_noise_layers,) | |
class NoiseLayerAddWeightedNode: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"batch_offset": ("INT", {"default": 0, "min": 0, "max": BIGMAX}), | |
"noise_type": (NoiseLayerType.LIST,), | |
"seed_gen_override": (SeedNoiseGeneration.LIST_WITH_OVERRIDE,), | |
"seed_offset": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX}), | |
"noise_weight": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 10.0, "step": 0.001}), | |
"balance_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "step": 0.001}), | |
}, | |
"optional": { | |
"prev_noise_layers": ("NOISE_LAYERS",), | |
"mask_optional": ("MASK",), | |
"seed_override": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "forceInput": True}), | |
} | |
} | |
RETURN_TYPES = ("NOISE_LAYERS",) | |
CATEGORY = "Animate Diff ππ π /noise layers" | |
FUNCTION = "create_layers" | |
def create_layers(self, batch_offset: int, noise_type: str, seed_gen_override: str, seed_offset: int, | |
noise_weight: float, balance_multiplier: float, | |
prev_noise_layers: NoiseLayerGroup=None, mask_optional: Tensor=None, seed_override: int=None,): | |
# prepare prev_noise_layers | |
if prev_noise_layers is None: | |
prev_noise_layers = NoiseLayerGroup() | |
prev_noise_layers = prev_noise_layers.clone() | |
# create layer | |
layer = NoiseLayerAddWeighted(noise_type=noise_type, batch_offset=batch_offset, seed_gen_override=seed_gen_override, seed_offset=seed_offset, | |
seed_override=seed_override, mask=mask_optional, | |
noise_weight=noise_weight, balance_multiplier=balance_multiplier) | |
prev_noise_layers.add_to_start(layer) | |
return (prev_noise_layers,) | |
class IterationOptionsNode: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"iterations": ("INT", {"default": 1, "min": 1}), | |
}, | |
"optional": { | |
"iter_batch_offset": ("INT", {"default": 0, "min": 0, "max": BIGMAX}), | |
"iter_seed_offset": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX}), | |
} | |
} | |
RETURN_TYPES = ("ITERATION_OPTS",) | |
CATEGORY = "Animate Diff ππ π /iteration opts" | |
FUNCTION = "create_iter_opts" | |
def create_iter_opts(self, iterations: int, iter_batch_offset: int=0, iter_seed_offset: int=0): | |
iter_opts = IterationOptions(iterations=iterations, iter_batch_offset=iter_batch_offset, iter_seed_offset=iter_seed_offset) | |
return (iter_opts,) | |
class FreeInitOptionsNode: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"iterations": ("INT", {"default": 2, "min": 1}), | |
"filter": (FreeInitFilter.LIST,), | |
"d_s": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.001}), | |
"d_t": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.001}), | |
"n_butterworth": ("INT", {"default": 4, "min": 1, "max": 100},), | |
"sigma_step": ("INT", {"default": 999, "min": 1, "max": 999}), | |
"apply_to_1st_iter": ("BOOLEAN", {"default": False}), | |
"init_type": (FreeInitOptions.LIST,) | |
}, | |
"optional": { | |
"iter_batch_offset": ("INT", {"default": 0, "min": 0, "max": BIGMAX}), | |
"iter_seed_offset": ("INT", {"default": 1, "min": BIGMIN, "max": BIGMAX}), | |
} | |
} | |
RETURN_TYPES = ("ITERATION_OPTS",) | |
CATEGORY = "Animate Diff ππ π /iteration opts" | |
FUNCTION = "create_iter_opts" | |
def create_iter_opts(self, iterations: int, filter: str, d_s: float, d_t: float, n_butterworth: int, | |
sigma_step: int, apply_to_1st_iter: bool, init_type: str, | |
iter_batch_offset: int=0, iter_seed_offset: int=1): | |
# init_type does nothing for now, not until I add more methods of applying low+high freq noise | |
iter_opts = FreeInitOptions(iterations=iterations, step=sigma_step, apply_to_1st_iter=apply_to_1st_iter, | |
filter=filter, d_s=d_s, d_t=d_t, n=n_butterworth, init_type=init_type, | |
iter_batch_offset=iter_batch_offset, iter_seed_offset=iter_seed_offset) | |
return (iter_opts,) | |
class CustomCFGNode: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"cfg_multival": ("MULTIVAL",), | |
} | |
} | |
RETURN_TYPES = ("CUSTOM_CFG",) | |
CATEGORY = "Animate Diff ππ π /sample settings" | |
FUNCTION = "create_custom_cfg" | |
def create_custom_cfg(self, cfg_multival: Union[float, Tensor]): | |
keyframe = CustomCFGKeyframe(cfg_multival=cfg_multival) | |
cfg_custom = CustomCFGKeyframeGroup() | |
cfg_custom.add(keyframe) | |
return (cfg_custom,) | |
class CustomCFGKeyframeNode: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"cfg_multival": ("MULTIVAL",), | |
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), | |
"guarantee_steps": ("INT", {"default": 1, "min": 0, "max": BIGMAX}), | |
}, | |
"optional": { | |
"prev_custom_cfg": ("CUSTOM_CFG",), | |
} | |
} | |
RETURN_TYPES = ("CUSTOM_CFG",) | |
CATEGORY = "Animate Diff ππ π /sample settings" | |
FUNCTION = "create_custom_cfg" | |
def create_custom_cfg(self, cfg_multival: Union[float, Tensor], start_percent: float=0.0, guarantee_steps: int=1, | |
prev_custom_cfg: CustomCFGKeyframeGroup=None): | |
if not prev_custom_cfg: | |
prev_custom_cfg = CustomCFGKeyframeGroup() | |
prev_custom_cfg = prev_custom_cfg.clone() | |
keyframe = CustomCFGKeyframe(cfg_multival=cfg_multival, start_percent=start_percent, guarantee_steps=guarantee_steps) | |
prev_custom_cfg.add(keyframe) | |
return (prev_custom_cfg,) | |