param-bharat's picture
feat: upgrade and improve secrets detection
f4dbf56
import hashlib
import json
import os
import pathlib
import tempfile
from enum import Enum
from typing import Optional, Any
import weave
from pydantic import BaseModel, PrivateAttr
from guardrails_genie.guardrails.base import Guardrail
try:
from detect_secrets import SecretsCollection
from detect_secrets.settings import default_settings
import hyperscan
except ImportError:
raise ImportError(
"The `detect-secrets` and the `hyperscan` packages are required for using the SecretsGuardrail. "
"Please install then by running `pip install detect-secrets hyperscan`."
)
class REDACTION(str, Enum):
"""
Enum for different types of redaction modes.
"""
REDACT_PARTIAL = "REDACT_PARTIAL"
REDACT_ALL = "REDACT_ALL"
REDACT_HASH = "REDACT_HASH"
REDACT_NONE = "REDACT_NONE"
def redact_value(value: str, mode: str) -> str:
"""
Redacts the given value based on the specified redaction mode.
Args:
value (str): The string value to be redacted.
mode (str): The redaction mode to be applied. It can be one of the following:
- REDACTION.REDACT_PARTIAL: Partially redacts the value.
- REDACTION.REDACT_ALL: Fully redacts the value.
- REDACTION.REDACT_HASH: Redacts the value by hashing it.
- REDACTION.REDACT_NONE: No redaction is applied.
Returns:
str: The redacted value based on the specified mode.
"""
replacement = value
if mode == REDACTION.REDACT_PARTIAL:
replacement = "[REDACTED:]" + value[:2] + ".." + value[-2:] + "[:REDACTED]"
elif mode == REDACTION.REDACT_ALL:
replacement = "[REDACTED:]" + ("*" * len(value)) + "[:REDACTED]"
elif mode == REDACTION.REDACT_HASH:
replacement = (
"[REDACTED:]" + hashlib.md5(value.encode()).hexdigest() + "[:REDACTED]"
)
return replacement
class SecretsDetectionSimpleResponse(BaseModel):
"""
A simple response model for secrets detection.
Attributes:
contains_secrets (bool): Indicates if secrets were detected.
explanation (str): Explanation of the detection result.
redacted_text (Optional[str]): The redacted text if secrets were found.
risk_score (float): The risk score of the detection result. (0.0, 0.5, 1.0)
"""
contains_secrets: bool
explanation: str
redacted_text: Optional[str] = None
risk_score: float = 0.0
@property
def safe(self) -> bool:
"""
Property to check if the text is safe (no secrets detected).
Returns:
bool: True if no secrets were detected, False otherwise.
"""
return not self.contains_secrets
class SecretsDetectionResponse(SecretsDetectionSimpleResponse):
"""
A detailed response model for secrets detection.
Attributes:
detected_secrets (dict[str, list[str]]): Dictionary of detected secrets.
"""
detected_secrets: dict[str, Any] | None = None
class SecretsInfo(BaseModel):
"""
Model representing information about a detected secret.
Attributes:
secret (str): The detected secret value.
line_number (int): The line number where the secret was found.
"""
secret: str
line_number: int
class ScanResult(BaseModel):
"""
Model representing the result of a secrets scan.
Attributes:
detected_secrets (dict[str, Any] | None): Dictionary of detected secrets, or None if no secrets were found.
modified_prompt (str): The modified prompt with secrets redacted.
has_secret (bool): Indicates if any secrets were detected.
risk_score (float): The risk score of the detection result.
"""
detected_secrets: dict[str, Any] | None = None
modified_prompt: str
has_secret: bool
risk_score: float
class DetectSecretsModel(weave.Model):
"""
Model for detecting secrets using the detect-secrets library.
"""
@staticmethod
def scan(text: str) -> dict[str, list[SecretsInfo]]:
"""
Scans the given text for secrets using the detect-secrets library.
Args:
text (str): The text to scan for secrets.
Returns:
dict[str, list[SecretsInfo]]: A dictionary where the keys are secret types and the values are lists of SecretsInfo objects.
"""
secrets = SecretsCollection()
temp_file = tempfile.NamedTemporaryFile(delete=False)
temp_file.write(text.encode("utf-8"))
temp_file.close()
with default_settings():
secrets.scan_file(str(temp_file.name))
unique_secrets = {}
for file in secrets.files:
for found_secret in secrets[file]:
if found_secret.secret_value is None:
continue
secret_type = found_secret.type
actual_secret = found_secret.secret_value
line_number = found_secret.line_number
if secret_type not in unique_secrets:
unique_secrets[secret_type] = []
unique_secrets[secret_type].append(
SecretsInfo(secret=actual_secret, line_number=line_number)
)
os.remove(temp_file.name)
return unique_secrets
@weave.op
def invoke(self, text: str) -> dict[str, list[SecretsInfo]]:
"""
Invokes the scan method to detect secrets in the given text.
Args:
text (str): The text to scan for secrets.
Returns:
dict[str, list[SecretsInfo]]: A dictionary where the keys are secret types and the values are lists of SecretsInfo objects.
"""
return self.scan(text)
class HyperScanModel(weave.Model):
"""
Model for detecting secrets using the Hyperscan library.
We use the Hyperscan library to scan for secrets using regex patterns.
The patterns are mined from https://github.com/mazen160/secrets-patterns-db
This model is used in conjunction with the DetectSecretsModel to improve the detection of secrets.
"""
_db: Any = PrivateAttr()
_pattern_map: dict[str, str] = PrivateAttr()
only_high_confidence: bool = False
ids: list[str] = []
def _load_patterns(self) -> dict[str, str]:
"""
Loads the patterns from a JSONL file.
Returns:
dict[str, str]: A dictionary where the keys are pattern names and the values are regex patterns.
"""
patterns = (
pathlib.Path(__file__).parent.resolve() / "secrets_patterns.jsonl"
).open()
patterns_list = [json.loads(line) for line in patterns]
if self.only_high_confidence:
patterns_list = [
pattern for pattern in patterns_list if pattern["confidence"] == "high"
]
return {pattern["name"]: pattern["regex"] for pattern in patterns_list}
def __init__(self, **kwargs: Any):
"""
Initializes the HyperScanModel instance.
"""
super().__init__(**kwargs)
def model_post_init(self, __context: Any) -> None:
"""
Post-initialization method to load patterns and compile the Hyperscan database.
"""
self._pattern_map = self._load_patterns()
self.ids = list(self._pattern_map.keys())
expressions = [pattern.encode() for pattern in self._pattern_map.values()]
self._db = hyperscan.Database()
self._db.compile(expressions=expressions, ids=list(range(len(expressions))))
def scan(self, text: str) -> dict[str, list[SecretsInfo]]:
"""
Scans the given text for secrets using the Hyperscan library.
Args:
text (str): The text to scan for secrets.
Returns:
dict[str, list[SecretsInfo]]: A dictionary where the keys are secret types and the values are lists of SecretsInfo objects.
"""
unique_secrets = {}
def on_match(idx, start, end, flags, context):
"""
Callback function for handling matches found by Hyperscan.
Args:
idx: The index of the matched pattern.
start: The start position of the match.
end: The end position of the match.
flags: The flags associated with the match.
context: The context provided to the scan method.
"""
secret = context["text"][start:end]
line_number = context["line_number"]
current_match = unique_secrets.setdefault(self.ids[idx], [])
if not current_match or len(secret) > len(current_match[0].secret):
unique_secrets[self.ids[idx]] = [
SecretsInfo(line_number=line_number, secret=secret)
]
for line_no, line in enumerate(text.splitlines(), start=1):
self._db.scan(
line.encode(),
match_event_handler=on_match,
context={"text": line, "line_number": line_no},
)
return unique_secrets
@weave.op
def invoke(self, text: str) -> dict[str, list[SecretsInfo]]:
"""
Invokes the scan method to detect secrets in the given text.
Args:
text (str): The text to scan for secrets.
Returns:
dict[str, list[SecretsInfo]]: A dictionary where the keys are secret types and the values are lists of SecretsInfo objects.
"""
return self.scan(text)
class SecretsDetectionGuardrail(Guardrail):
"""
Guardrail class for secrets detection using both detect-secrets and Hyperscan models.
Attributes:
redaction (REDACTION): The redaction mode to be applied.
_detect_secrets_model (Any): Instance of the DetectSecretsModel.
_hyperscan_model (Any): Instance of the HyperScanModel.
"""
redaction: REDACTION
_detect_secrets_model: Any = PrivateAttr()
_hyperscan_model: Any = PrivateAttr()
def model_post_init(self, __context: Any) -> None:
"""
Post-initialization method to initialize the detect-secrets and Hyperscan models.
"""
self._detect_secrets_model = DetectSecretsModel()
self._hyperscan_model = HyperScanModel()
def __init__(
self,
redaction: REDACTION = REDACTION.REDACT_ALL,
**kwargs,
):
"""
Initializes the SecretsDetectionGuardrail instance.
Args:
redaction (REDACTION): The redaction mode to be applied. Defaults to REDACTION.REDACT_ALL.
**kwargs: Additional keyword arguments.
"""
super().__init__(
redaction=redaction,
)
def get_modified_value(
self, unique_secrets: dict[str, Any], lines: list[str]
) -> str:
"""
Redacts the detected secrets in the given lines of text.
Args:
unique_secrets (dict[str, Any]): Dictionary of detected secrets.
lines (list[str]): List of lines of text.
Returns:
str: The modified text with secrets redacted.
"""
for _, secrets_list in unique_secrets.items():
for secret_info in secrets_list:
secret = secret_info.secret
line_number = secret_info.line_number
lines[line_number - 1] = lines[line_number - 1].replace(
secret, redact_value(secret, self.redaction)
)
modified_value = "\n".join(lines)
return modified_value
def get_scan_result(
self, unique_secrets: dict[str, list[SecretsInfo]], lines: list[str]
) -> ScanResult | None:
"""
Generates a ScanResult based on the detected secrets.
Args:
unique_secrets (dict[str, list[SecretsInfo]]): Dictionary of detected secrets.
lines (list[str]): List of lines of text.
Returns:
ScanResult | None: The scan result if secrets are detected, otherwise None.
"""
if unique_secrets:
modified_value = self.get_modified_value(unique_secrets, lines)
detected_secrets = {
k: [i.secret for i in v] for k, v in unique_secrets.items()
}
return ScanResult(
**{
"detected_secrets": detected_secrets,
"modified_prompt": modified_value,
"has_secret": True,
"risk_score": 1.0,
}
)
return None
def scan(self, prompt: str) -> ScanResult:
"""
Scans the given prompt for secrets using both detect-secrets and Hyperscan models.
Args:
prompt (str): The text to scan for secrets.
Returns:
ScanResult: The scan result with detected secrets and redacted text.
"""
if prompt.strip() == "":
return ScanResult(
**{
"detected_secrets": None,
"modified_prompt": prompt,
"has_secret": False,
"risk_score": 0.0,
}
)
unique_secrets = self._detect_secrets_model.invoke(text=prompt)
results = self.get_scan_result(unique_secrets, prompt.splitlines())
if results:
return results
unique_secrets = self._hyperscan_model.invoke(text=prompt)
results = self.get_scan_result(unique_secrets, prompt.splitlines())
if results:
results.risk_score = 0.5
return results
return ScanResult(
**{
"detected_secrets": None,
"modified_prompt": prompt,
"has_secret": False,
"risk_score": 0.0,
}
)
@weave.op
def guard(
self,
prompt: str,
return_detected_secrets: bool = True,
**kwargs,
) -> SecretsDetectionResponse | SecretsDetectionResponse:
"""
Guards the given prompt by scanning for secrets and optionally returning detected secrets.
Args:
prompt (str): The text to scan for secrets.
return_detected_secrets (bool): Whether to return detected secrets in the response. Defaults to True.
**kwargs: Additional keyword arguments.
Returns:
SecretsDetectionResponse | SecretsDetectionSimpleResponse: The response with scan results and redacted text.
"""
results = self.scan(prompt)
explanation_parts = []
if results.has_secret:
explanation_parts.append("Found the following secrets in the text:")
for secret_type, matches in results.detected_secrets.items():
explanation_parts.append(f"- {secret_type}: {len(matches)} instance(s)")
else:
explanation_parts.append("No secrets detected in the text.")
if return_detected_secrets:
return SecretsDetectionResponse(
contains_secrets=results.has_secret,
detected_secrets=results.detected_secrets,
explanation="\n".join(explanation_parts),
redacted_text=results.modified_prompt,
risk_score=results.risk_score,
)
else:
return SecretsDetectionSimpleResponse(
contains_secrets=not results.has_secret,
explanation="\n".join(explanation_parts),
redacted_text=results.modified_prompt,
risk_score=results.risk_score,
)