cloth-segmentation / process.py
wildoctopus's picture
Upload 5 files
896437a
from network import U2NET
import os
from PIL import Image
import cv2
import gdown
import argparse
import numpy as np
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
from collections import OrderedDict
from options import opt
def load_checkpoint(model, checkpoint_path):
if not os.path.exists(checkpoint_path):
print("----No checkpoints at given path----")
return
model_state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu"))
new_state_dict = OrderedDict()
for k, v in model_state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
print("----checkpoints loaded from path: {}----".format(checkpoint_path))
return model
def get_palette(num_cls):
""" Returns the color map for visualizing the segmentation mask.
Args:
num_cls: Number of classes
Returns:
The color map
"""
n = num_cls
palette = [0] * (n * 3)
for j in range(0, n):
lab = j
palette[j * 3 + 0] = 0
palette[j * 3 + 1] = 0
palette[j * 3 + 2] = 0
i = 0
while lab:
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
i += 1
lab >>= 3
return palette
class Normalize_image(object):
"""Normalize given tensor into given mean and standard dev
Args:
mean (float): Desired mean to substract from tensors
std (float): Desired std to divide from tensors
"""
def __init__(self, mean, std):
assert isinstance(mean, (float))
if isinstance(mean, float):
self.mean = mean
if isinstance(std, float):
self.std = std
self.normalize_1 = transforms.Normalize(self.mean, self.std)
self.normalize_3 = transforms.Normalize([self.mean] * 3, [self.std] * 3)
self.normalize_18 = transforms.Normalize([self.mean] * 18, [self.std] * 18)
def __call__(self, image_tensor):
if image_tensor.shape[0] == 1:
return self.normalize_1(image_tensor)
elif image_tensor.shape[0] == 3:
return self.normalize_3(image_tensor)
elif image_tensor.shape[0] == 18:
return self.normalize_18(image_tensor)
else:
assert "Please set proper channels! Normlization implemented only for 1, 3 and 18"
def apply_transform(img):
transforms_list = []
transforms_list += [transforms.ToTensor()]
transforms_list += [Normalize_image(0.5, 0.5)]
transform_rgb = transforms.Compose(transforms_list)
return transform_rgb(img)
def generate_mask(input_image, net, palette, device = 'cpu'):
#img = Image.open(input_image).convert('RGB')
img = input_image
img_size = img.size
img = img.resize((768, 768), Image.BICUBIC)
image_tensor = apply_transform(img)
image_tensor = torch.unsqueeze(image_tensor, 0)
alpha_out_dir = os.path.join(opt.output,'alpha')
cloth_seg_out_dir = os.path.join(opt.output,'cloth_seg')
os.makedirs(alpha_out_dir, exist_ok=True)
os.makedirs(cloth_seg_out_dir, exist_ok=True)
with torch.no_grad():
output_tensor = net(image_tensor.to(device))
output_tensor = F.log_softmax(output_tensor[0], dim=1)
output_tensor = torch.max(output_tensor, dim=1, keepdim=True)[1]
output_tensor = torch.squeeze(output_tensor, dim=0)
output_arr = output_tensor.cpu().numpy()
classes_to_save = []
# Check which classes are present in the image
for cls in range(1, 4): # Exclude background class (0)
if np.any(output_arr == cls):
classes_to_save.append(cls)
# Save alpha masks
for cls in classes_to_save:
alpha_mask = (output_arr == cls).astype(np.uint8) * 255
alpha_mask = alpha_mask[0] # Selecting the first channel to make it 2D
alpha_mask_img = Image.fromarray(alpha_mask, mode='L')
alpha_mask_img = alpha_mask_img.resize(img_size, Image.BICUBIC)
alpha_mask_img.save(os.path.join(alpha_out_dir, f'{cls}.png'))
# Save final cloth segmentations
cloth_seg = Image.fromarray(output_arr[0].astype(np.uint8), mode='P')
cloth_seg.putpalette(palette)
cloth_seg = cloth_seg.resize(img_size, Image.BICUBIC)
cloth_seg.save(os.path.join(cloth_seg_out_dir, 'final_seg.png'))
return cloth_seg
def check_or_download_model(file_path):
if not os.path.exists(file_path):
os.makedirs(os.path.dirname(file_path), exist_ok=True)
url = "https://drive.google.com/uc?id=11xTBALOeUkyuaK3l60CpkYHLTmv7k3dY"
gdown.download(url, file_path, quiet=False)
print("Model downloaded successfully.")
else:
print("Model already exists.")
def load_seg_model(checkpoint_path, device='cpu'):
net = U2NET(in_ch=3, out_ch=4)
check_or_download_model(checkpoint_path)
net = load_checkpoint(net, checkpoint_path)
net = net.to(device)
net = net.eval()
return net
def main(args):
device = 'cuda:0' if args.cuda else 'cpu'
# Create an instance of your model
model = load_seg_model(args.checkpoint_path, device=device)
palette = get_palette(4)
img = Image.open(args.image).convert('RGB')
cloth_seg = generate_mask(img, net=model, palette=palette, device=device)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Help to set arguments for Cloth Segmentation.')
parser.add_argument('--image', type=str, help='Path to the input image')
parser.add_argument('--cuda', action='store_true', help='Enable CUDA (default: False)')
parser.add_argument('--checkpoint_path', type=str, default='model/cloth_segm.pth', help='Path to the checkpoint file')
args = parser.parse_args()
main(args)