Spaces:
Runtime error
Runtime error
# Copyright (c) Tencent Inc. All rights reserved. | |
import os.path as osp | |
import cv2 | |
import torch | |
from mmengine.config import Config | |
from mmengine.dataset import Compose | |
from mmdet.apis import init_detector | |
from mmdet.utils import get_test_pipeline_cfg | |
def inference(model, image, texts, test_pipeline, score_thr=0.3, max_dets=100): | |
image = cv2.imread(image) | |
image = image[:, :, [2, 1, 0]] | |
data_info = dict(img=image, img_id=0, texts=texts) | |
data_info = test_pipeline(data_info) | |
data_batch = dict(inputs=data_info['inputs'].unsqueeze(0), | |
data_samples=[data_info['data_samples']]) | |
with torch.no_grad(): | |
output = model.test_step(data_batch)[0] | |
pred_instances = output.pred_instances | |
# score thresholding | |
pred_instances = pred_instances[pred_instances.scores.float() > score_thr] | |
# max detections | |
if len(pred_instances.scores) > max_dets: | |
indices = pred_instances.scores.float().topk(max_dets)[1] | |
pred_instances = pred_instances[indices] | |
pred_instances = pred_instances.cpu().numpy() | |
boxes = pred_instances['bboxes'] | |
labels = pred_instances['labels'] | |
scores = pred_instances['scores'] | |
label_texts = [texts[x][0] for x in labels] | |
return boxes, labels, label_texts, scores | |
if __name__ == "__main__": | |
config_file = "configs/pretrain/yolo_world_v2_x_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_1280ft_lvis_minival.py" | |
checkpoint = "weights/yolo_world_v2_x_obj365v1_goldg_cc3mlite_pretrain_1280ft-14996a36.pth" | |
cfg = Config.fromfile(config_file) | |
cfg.work_dir = osp.join('./work_dirs') | |
# init model | |
cfg.load_from = checkpoint | |
model = init_detector(cfg, checkpoint=checkpoint, device='cuda:0') | |
test_pipeline_cfg = get_test_pipeline_cfg(cfg=cfg) | |
test_pipeline_cfg[0].type = 'mmdet.LoadImageFromNDArray' | |
test_pipeline = Compose(test_pipeline_cfg) | |
texts = [['person'], ['bus'], [' ']] | |
image = "demo/sample_images/bus.jpg" | |
print(f"starting to detect: {image}") | |
results = inference(model, image, texts, test_pipeline) | |
format_str = [ | |
f"obj-{idx}: {box}, label-{lbl}, class-{lbl_text}, score-{score}" | |
for idx, (box, lbl, lbl_text, score) in enumerate(zip(*results)) | |
] | |
print("detecting results:") | |
for q in format_str: | |
print(q) | |