|
import gradio as gr |
|
import tensorflow as tf |
|
import gdown |
|
from PIL import Image |
|
import pillow_avif |
|
|
|
input_shape = (32, 32, 3) |
|
resized_shape = (224, 224, 3) |
|
num_classes = 10 |
|
labels = { |
|
0: "plane", |
|
1: "car", |
|
2: "bird", |
|
3: "cat", |
|
4: "deer", |
|
5: "dog", |
|
6: "frog", |
|
7: "horse", |
|
8: "ship", |
|
9: "truck", |
|
} |
|
|
|
|
|
def download_model(): |
|
url = "https://drive.google.com/uc?id=12700bE-pomYKoVQ214VrpBoJ7akXcTpL" |
|
output = "modelV2Lmixed.keras" |
|
gdown.download(url, output, quiet=False) |
|
return output |
|
|
|
model_file = download_model() |
|
|
|
|
|
model = tf.keras.models.load_model(model_file) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def predict_class(image): |
|
img = tf.cast(image, tf.float32) |
|
img = tf.image.resize(img, [input_shape[0], input_shape[1]]) |
|
img = tf.expand_dims(img, axis=0) |
|
prediction = model.predict(img) |
|
return prediction[0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def classify_image(image): |
|
results = predict_class(image) |
|
print("results is ...", results) |
|
output = {labels.get(i): float(results[i]) for i in range(len(results))} |
|
print("output is ...", output) |
|
result = output if max(output.values()) >=0.98 else {"NO_CIFAR10_CLASS": 1} |
|
return result |
|
|
|
|
|
inputs = gr.components.Image(type="pil", label="Upload an image") |
|
|
|
outputs = gr.components.Label(num_top_classes=4) |
|
|
|
title = "<h1 style='text-align: center;'>Image Classifier</h1>" |
|
description = "Upload an image and get the predicted class." |
|
|
|
|
|
gr.Interface(fn=classify_image, |
|
inputs=inputs, |
|
outputs=outputs, |
|
title=title, |
|
examples=[["00_plane.jpg"], ["01_car.jpg"], ["02_house.jpg"], ["03_cat.jpg"], ["04_deer.jpg"]], |
|
|
|
description=description).launch() |
|
|