File size: 2,317 Bytes
2f9a8a8
 
 
 
c88379a
2f9a8a8
c88379a
2f9a8a8
 
 
c88379a
 
7d1537c
2f9a8a8
 
8db3578
2f9a8a8
 
 
 
 
c88379a
2f9a8a8
 
 
 
 
 
 
 
 
c88379a
 
36238a7
2f9a8a8
 
c88379a
2f9a8a8
 
 
 
 
d532c55
2f9a8a8
 
7d1537c
2f9a8a8
 
8db3578
2f9a8a8
 
7d1537c
2f9a8a8
 
79948e0
2f9a8a8
 
cb7cbf4
2f9a8a8
 
 
fd3835f
2f9a8a8
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import requests
import os, io
import gradio as gr
# from PIL import Image

# API_URL = "https://api-inference.huggingface.co/models/facebook/detr-resnet-50-panoptic"

SECRET_TOKEN = os.getenv("SECRET_TOKEN")
API_URL = "https://api-inference.huggingface.co/models/facebook/detr-resnet-50-dc5-panoptic"
headers = {"Authorization": f'Bearer {SECRET_TOKEN}'}



def image_classifier(inp):
    return {'cat': 0.3, 'dog': 0.7}

def query(filename):
    with open(filename, "rb") as f:
        data = f.read()
    response = requests.post(API_URL, headers=headers, data=data)
    return response.json()

def rb(img):
    # initialiaze io to_bytes converter
    img_byte_arr = io.BytesIO()
    # define quality of saved array
    img.save(img_byte_arr, format='JPEG', subsampling=0, quality=100)
    # converts image array to bytesarray
    img_byte_arr = img_byte_arr.getvalue()
    response = requests.post(API_URL, headers=headers, data=img_byte_arr)
    return response.json()


inputs = gr.components.Image(type="pil", label="Upload an image")
demo = gr.Interface(fn=rb, inputs=inputs, outputs="json")
demo.launch()

# import io
# import requests
# from PIL import Image
# import torch
# import numpy

# from transformers import DetrFeatureExtractor, DetrForSegmentation
# from transformers.models.detr.feature_extraction_detr import rgb_to_id

# url = "http://images.cocodataset.org/val2017/000000039769.jpg"
# image = Image.open(requests.get(url, stream=True).raw)

# feature_extractor = DetrFeatureExtractor.from_pretrained("facebook/detr-resnet-50-panoptic")
# model = DetrForSegmentation.from_pretrained("facebook/detr-resnet-50-panoptic")

# # prepare image for the model
# inputs = feature_extractor(images=image, return_tensors="pt")

# # forward pass
# outputs = model(**inputs)

# # use the `post_process_panoptic` method of `DetrFeatureExtractor` to convert to COCO format
# processed_sizes = torch.as_tensor(inputs["pixel_values"].shape[-2:]).unsqueeze(0)
# result = feature_extractor.post_process_panoptic(outputs, processed_sizes)[0]

# # the segmentation is stored in a special-format png
# panoptic_seg = Image.open(io.BytesIO(result["png_string"]))
# panoptic_seg = numpy.array(panoptic_seg, dtype=numpy.uint8)
# # retrieve the ids corresponding to each mask
# panoptic_seg_id = rgb_to_id(panoptic_seg)