import requests | |
import os, io | |
import gradio as gr | |
# from PIL import Image | |
# API_URL = "https://api-inference.huggingface.co/models/facebook/detr-resnet-50-panoptic" | |
SECRET_TOKEN = os.getenv("SECRET_TOKEN") | |
API_URL = "https://api-inference.huggingface.co/models/facebook/detr-resnet-50-dc5-panoptic" | |
headers = {"Authorization": f'Bearer {SECRET_TOKEN}'} | |
def image_classifier(inp): | |
return {'cat': 0.3, 'dog': 0.7} | |
def query(filename): | |
with open(filename, "rb") as f: | |
data = f.read() | |
response = requests.post(API_URL, headers=headers, data=data) | |
return response.json() | |
def rb(img): | |
# initialiaze io to_bytes converter | |
img_byte_arr = io.BytesIO() | |
# define quality of saved array | |
img.save(img_byte_arr, format='JPEG', subsampling=0, quality=100) | |
# converts image array to bytesarray | |
img_byte_arr = img_byte_arr.getvalue() | |
response = requests.post(API_URL, headers=headers, data=img_byte_arr) | |
return response.json() | |
inputs = gr.components.Image(type="pil", label="Upload an image") | |
demo = gr.Interface(fn=rb, inputs=inputs, outputs="json") | |
demo.launch() | |
# import io | |
# import requests | |
# from PIL import Image | |
# import torch | |
# import numpy | |
# from transformers import DetrFeatureExtractor, DetrForSegmentation | |
# from transformers.models.detr.feature_extraction_detr import rgb_to_id | |
# url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
# image = Image.open(requests.get(url, stream=True).raw) | |
# feature_extractor = DetrFeatureExtractor.from_pretrained("facebook/detr-resnet-50-panoptic") | |
# model = DetrForSegmentation.from_pretrained("facebook/detr-resnet-50-panoptic") | |
# # prepare image for the model | |
# inputs = feature_extractor(images=image, return_tensors="pt") | |
# # forward pass | |
# outputs = model(**inputs) | |
# # use the `post_process_panoptic` method of `DetrFeatureExtractor` to convert to COCO format | |
# processed_sizes = torch.as_tensor(inputs["pixel_values"].shape[-2:]).unsqueeze(0) | |
# result = feature_extractor.post_process_panoptic(outputs, processed_sizes)[0] | |
# # the segmentation is stored in a special-format png | |
# panoptic_seg = Image.open(io.BytesIO(result["png_string"])) | |
# panoptic_seg = numpy.array(panoptic_seg, dtype=numpy.uint8) | |
# # retrieve the ids corresponding to each mask | |
# panoptic_seg_id = rgb_to_id(panoptic_seg) | |