story_telling / app.py
yuvaranianandhan24's picture
Update app.py
268f3a0 verified
raw
history blame
5.2 kB
import os
import streamlit as st
import requests
from transformers import pipeline
import openai
from langchain import LLMChain, PromptTemplate
from langchain import HuggingFaceHub
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler
import torch
# Suppressing all warnings
import warnings
warnings.filterwarnings("ignore")
api_token = os.getenv('H_TOKEN')
# Image-to-text
def img2txt(url):
print("Initializing captioning model...")
captioning_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
print("Generating text from the image...")
text = captioning_model(url, max_new_tokens=20)[0]["generated_text"]
print(text)
return text
# Text-to-story
model = "tiiuae/falcon-7b-instruct"
llm = HuggingFaceHub(
huggingfacehub_api_token = api_token,
repo_id = model,
verbose = False,
model_kwargs = {"temperature":0.2, "max_new_tokens": 4000})
def generate_story(scenario, llm):
template= """You are a story teller.
You get a scenario as an input text, and generates a short story out of it.
Context: {scenario}
Story:
"""
prompt = PromptTemplate(template=template, input_variables=["scenario"])
#Let's create our LLM chain now
chain = LLMChain(prompt=prompt, llm=llm)
story = chain.predict(scenario=scenario)
start_index = story.find("Story:") + len("Story:")
# Extract the text after "Story:"
story = story[start_index:].strip()
return story
# Text-to-speech
def txt2speech(text):
print("Initializing text-to-speech conversion...")
API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits"
headers = {"Authorization": f"Bearer {api_token }"}
payloads = {'inputs': text}
response = requests.post(API_URL, headers=headers, json=payloads)
with open('audio_story.mp3', 'wb') as file:
file.write(response.content)
# text-to- image
def txt2img(text, style="realistic"):
model_id = "stabilityai/stable-diffusion-2"
# Use the Euler scheduler here instead
scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
image = pipe(prompt = text, guidance_scale = 7.5).images[0]
return image
st.sidebar.title("Choose the task")
# Streamlit web app main function
def main():
with st.sidebar.expander("Audio Story"):
st.set_page_config(page_title="🎨 Image-to-Audio Story 🎧", page_icon="πŸ–ΌοΈ")
st.title("Turn the Image into Audio Story")
# Allows users to upload an image file
uploaded_file = st.file_uploader("# πŸ“· Upload an image...", type=["jpg", "jpeg", "png"])
# Parameters for LLM model (in the sidebar)
#st.sidebar.markdown("# LLM Inference Configuration Parameters")
#top_k = st.sidebar.number_input("Top-K", min_value=1, max_value=100, value=5)
#top_p = st.sidebar.number_input("Top-P", min_value=0.0, max_value=1.0, value=0.8)
#temperature = st.sidebar.number_input("Temperature", min_value=0.1, max_value=2.0, value=1.5)
if uploaded_file is not None:
# Reads and saves uploaded image file
bytes_data = uploaded_file.read()
with open("uploaded_image.jpg", "wb") as file:
file.write(bytes_data)
st.image(uploaded_file, caption='πŸ–ΌοΈ Uploaded Image', use_column_width=True)
# Initiates AI processing and story generation
with st.spinner("## πŸ€– AI is at Work! "):
scenario = img2txt("uploaded_image.jpg") # Extracts text from the image
story = generate_story(scenario, llm) # Generates a story based on the image text, LLM params
txt2speech(story) # Converts the story to audio
st.markdown("---")
st.markdown("## πŸ“œ Image Caption")
st.write(scenario)
st.markdown("---")
st.markdown("## πŸ“– Story")
st.write(story)
st.markdown("---")
st.markdown("## 🎧 Audio Story")
st.audio("audio_story.mp3")
with st.sidebar.expander("Image Generator"):
st.title("Stable Diffusion Image Generation")
st.write("This app lets you generate images using Stable Diffusion with the Euler scheduler.")
prompt = st.text_input("Enter your prompt:")
image_style = st.selectbox("Style Selection", ["realistic", "cartoon", "watercolor"])
if st.button("Generate Image"):
if prompt:
with st.spinner("Generating image..."):
image = txt2img(prompt= prompt, style = image_style)
st.image(image)
else:
st.error("Please enter a prompt.")
st.title("Welcome to your Creative Canvas!")
st.write("Use the tools in the sidebar to create audio stories and unique images.")
if __name__ == '__main__':
main()