Diarizers_finetuned_model_test

This model is a fine-tuned version of pyannote/segmentation-3.0 on the sparkleai/Diarizers_dataset_test default dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7692
  • Der: 0.2484
  • False Alarm: 0.0450
  • Missed Detection: 0.0910
  • Confusion: 0.1124

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss Der False Alarm Missed Detection Confusion
No log 1.0 6 0.8050 0.2813 0.0708 0.1119 0.0986
No log 2.0 12 0.7748 0.2592 0.0547 0.0991 0.1054
No log 3.0 18 0.7718 0.2502 0.0447 0.0941 0.1114
No log 4.0 24 0.7677 0.2484 0.0448 0.0915 0.1121
No log 5.0 30 0.7692 0.2484 0.0450 0.0910 0.1124

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
11
Safetensors
Model size
1.47M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sparkleai/Diarizers_finetuned_model_test

Finetuned
(39)
this model