layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6932
  • Answer: {'precision': 0.7073434125269978, 'recall': 0.8096415327564895, 'f1': 0.755043227665706, 'number': 809}
  • Header: {'precision': 0.25925925925925924, 'recall': 0.23529411764705882, 'f1': 0.24669603524229072, 'number': 119}
  • Question: {'precision': 0.7767158992180713, 'recall': 0.8394366197183099, 'f1': 0.8068592057761733, 'number': 1065}
  • Overall Precision: 0.7217
  • Overall Recall: 0.7913
  • Overall F1: 0.7549
  • Overall Accuracy: 0.8047

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.8958 1.0 5 1.7117 {'precision': 0.015232292460015232, 'recall': 0.024721878862793572, 'f1': 0.01885014137606032, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.11567164179104478, 'recall': 0.11643192488262911, 'f1': 0.11605053813757606, 'number': 1065} 0.0601 0.0723 0.0656 0.3457
1.632 2.0 10 1.4951 {'precision': 0.027700831024930747, 'recall': 0.037082818294190356, 'f1': 0.03171247357293869, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.3054968287526427, 'recall': 0.27136150234741785, 'f1': 0.2874191944306315, 'number': 1065} 0.1571 0.1601 0.1586 0.4391
1.4434 3.0 15 1.2975 {'precision': 0.1747173689619733, 'recall': 0.21013597033374537, 'f1': 0.19079685746352415, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.39224704336399474, 'recall': 0.5605633802816902, 'f1': 0.46153846153846156, 'number': 1065} 0.3074 0.3848 0.3418 0.5806
1.2417 4.0 20 1.1193 {'precision': 0.3728470111448835, 'recall': 0.45488257107540175, 'f1': 0.40979955456570155, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.5278207109737248, 'recall': 0.6413145539906103, 'f1': 0.5790589232725731, 'number': 1065} 0.4608 0.5273 0.4918 0.6383
1.0407 5.0 25 0.9770 {'precision': 0.48043478260869565, 'recall': 0.546353522867738, 'f1': 0.5112781954887218, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.5961698584512906, 'recall': 0.672300469483568, 'f1': 0.6319505736981466, 'number': 1065} 0.5447 0.5810 0.5623 0.6890
0.8977 6.0 30 0.8662 {'precision': 0.559375, 'recall': 0.6637824474660075, 'f1': 0.6071226681741096, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.6157517899761337, 'recall': 0.7267605633802817, 'f1': 0.6666666666666667, 'number': 1065} 0.5845 0.6578 0.6190 0.7313
0.787 7.0 35 0.8246 {'precision': 0.6031589338598223, 'recall': 0.7552533992583437, 'f1': 0.6706915477497257, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.6820194862710364, 'recall': 0.7230046948356808, 'f1': 0.7019143117593437, 'number': 1065} 0.6332 0.6929 0.6617 0.7434
0.6913 8.0 40 0.7630 {'precision': 0.6112820512820513, 'recall': 0.7367119901112484, 'f1': 0.6681614349775784, 'number': 809} {'precision': 0.02702702702702703, 'recall': 0.01680672268907563, 'f1': 0.02072538860103627, 'number': 119} {'precision': 0.6604795050270689, 'recall': 0.8018779342723005, 'f1': 0.7243426632739611, 'number': 1065} 0.6200 0.7285 0.6699 0.7753
0.6196 9.0 45 0.7427 {'precision': 0.629145728643216, 'recall': 0.7737948084054388, 'f1': 0.6940133037694012, 'number': 809} {'precision': 0.08108108108108109, 'recall': 0.05042016806722689, 'f1': 0.062176165803108814, 'number': 119} {'precision': 0.7155247181266262, 'recall': 0.7746478873239436, 'f1': 0.7439134355275022, 'number': 1065} 0.6557 0.7311 0.6913 0.7750
0.57 10.0 50 0.7250 {'precision': 0.6613588110403397, 'recall': 0.7700865265760197, 'f1': 0.7115933752141633, 'number': 809} {'precision': 0.14285714285714285, 'recall': 0.09243697478991597, 'f1': 0.11224489795918367, 'number': 119} {'precision': 0.6997538966365874, 'recall': 0.8009389671361502, 'f1': 0.7469352014010507, 'number': 1065} 0.6644 0.7461 0.7029 0.7852
0.5314 11.0 55 0.7002 {'precision': 0.6476578411405295, 'recall': 0.7861557478368356, 'f1': 0.7102177554438861, 'number': 809} {'precision': 0.16216216216216217, 'recall': 0.10084033613445378, 'f1': 0.12435233160621763, 'number': 119} {'precision': 0.7123745819397993, 'recall': 0.8, 'f1': 0.7536488279522335, 'number': 1065} 0.6661 0.7526 0.7067 0.7901
0.4856 12.0 60 0.6901 {'precision': 0.682454251883746, 'recall': 0.7836835599505563, 'f1': 0.7295742232451092, 'number': 809} {'precision': 0.2717391304347826, 'recall': 0.21008403361344538, 'f1': 0.23696682464454974, 'number': 119} {'precision': 0.7309602649006622, 'recall': 0.8291079812206573, 'f1': 0.7769467663880335, 'number': 1065} 0.6918 0.7737 0.7305 0.8001
0.4486 13.0 65 0.6915 {'precision': 0.6917211328976035, 'recall': 0.7849196538936959, 'f1': 0.7353792704111175, 'number': 809} {'precision': 0.25806451612903225, 'recall': 0.20168067226890757, 'f1': 0.22641509433962265, 'number': 119} {'precision': 0.7395659432387313, 'recall': 0.831924882629108, 'f1': 0.7830313742819267, 'number': 1065} 0.6994 0.7752 0.7354 0.8011
0.4177 14.0 70 0.6835 {'precision': 0.6862326574172892, 'recall': 0.7948084054388134, 'f1': 0.736540664375716, 'number': 809} {'precision': 0.24731182795698925, 'recall': 0.19327731092436976, 'f1': 0.2169811320754717, 'number': 119} {'precision': 0.7416666666666667, 'recall': 0.8356807511737089, 'f1': 0.7858719646799116, 'number': 1065} 0.6978 0.7807 0.7369 0.8026
0.3927 15.0 75 0.6891 {'precision': 0.7016393442622951, 'recall': 0.7935723114956736, 'f1': 0.7447795823665894, 'number': 809} {'precision': 0.2358490566037736, 'recall': 0.21008403361344538, 'f1': 0.22222222222222224, 'number': 119} {'precision': 0.7632478632478632, 'recall': 0.8384976525821596, 'f1': 0.7991051454138701, 'number': 1065} 0.7120 0.7827 0.7457 0.8038
0.3743 16.0 80 0.6904 {'precision': 0.7064622124863089, 'recall': 0.7972805933250927, 'f1': 0.7491289198606274, 'number': 809} {'precision': 0.27450980392156865, 'recall': 0.23529411764705882, 'f1': 0.2533936651583711, 'number': 119} {'precision': 0.7675814751286449, 'recall': 0.8403755868544601, 'f1': 0.8023307933662035, 'number': 1065} 0.7189 0.7868 0.7513 0.8034
0.3683 17.0 85 0.6928 {'precision': 0.7037837837837838, 'recall': 0.8046971569839307, 'f1': 0.7508650519031143, 'number': 809} {'precision': 0.2545454545454545, 'recall': 0.23529411764705882, 'f1': 0.2445414847161572, 'number': 119} {'precision': 0.7735191637630662, 'recall': 0.8338028169014085, 'f1': 0.8025305015815634, 'number': 1065} 0.7178 0.7863 0.7505 0.8035
0.3553 18.0 90 0.6940 {'precision': 0.7045454545454546, 'recall': 0.8046971569839307, 'f1': 0.7512983266012695, 'number': 809} {'precision': 0.25925925925925924, 'recall': 0.23529411764705882, 'f1': 0.24669603524229072, 'number': 119} {'precision': 0.7739130434782608, 'recall': 0.8356807511737089, 'f1': 0.8036117381489841, 'number': 1065} 0.7191 0.7873 0.7516 0.8035
0.3471 19.0 95 0.6932 {'precision': 0.7071583514099783, 'recall': 0.8059332509270705, 'f1': 0.753321779318313, 'number': 809} {'precision': 0.2545454545454545, 'recall': 0.23529411764705882, 'f1': 0.2445414847161572, 'number': 119} {'precision': 0.7746967071057193, 'recall': 0.8394366197183099, 'f1': 0.8057683641279857, 'number': 1065} 0.7200 0.7898 0.7533 0.8043
0.3386 20.0 100 0.6932 {'precision': 0.7073434125269978, 'recall': 0.8096415327564895, 'f1': 0.755043227665706, 'number': 809} {'precision': 0.25925925925925924, 'recall': 0.23529411764705882, 'f1': 0.24669603524229072, 'number': 119} {'precision': 0.7767158992180713, 'recall': 0.8394366197183099, 'f1': 0.8068592057761733, 'number': 1065} 0.7217 0.7913 0.7549 0.8047

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
28
Safetensors
Model size
113M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for srinidhireddy1604/layoutlm-funsd

Finetuned
(146)
this model
Finetunes
1 model