Usage

This checkpoint should be loaded into BartForConditionalGeneration.from_pretrained. See the BART docs for more information.

Metrics for DistilBART models

Model Name MM Params Inference Time (MS) Speedup Rouge 2 Rouge-L
distilbart-xsum-12-1 222 90 2.54 18.31 33.37
distilbart-xsum-6-6 230 132 1.73 20.92 35.73
distilbart-xsum-12-3 255 106 2.16 21.37 36.39
distilbart-xsum-9-6 268 136 1.68 21.72 36.61
bart-large-xsum (baseline) 406 229 1 21.85 36.50
distilbart-xsum-12-6 306 137 1.68 22.12 36.99
bart-large-cnn (baseline) 406 381 1 21.06 30.63
distilbart-12-3-cnn 255 214 1.78 20.57 30.00
distilbart-12-6-cnn 306 307 1.24 21.26 30.59
distilbart-6-6-cnn 230 182 2.09 20.17 29.70
Downloads last month
34,405
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sshleifer/distilbart-cnn-6-6

Finetunes
10 models
Quantizations
1 model

Datasets used to train sshleifer/distilbart-cnn-6-6

Spaces using sshleifer/distilbart-cnn-6-6 12