metadata
license: apache-2.0
library_name: peft
base_model: ssong1/kgpt-j-5.8b
datasets:
- open-Orca/OpenOrca
language:
- en
- kr
This Model
This model is a finetuned version of [EleutherAI/polyglot-ko-5.8b] (https://huggingface.co/EleutherAI/polyglot-ko-5.8b).
It was aligned with ๐ค TRL's SFTTrainer
on the Open-Orca/OpenOrca dataset.
How to use
import json
import torch
from peft import LoraConfig, get_peft_model
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
model1 = AutoModelForCausalLM.from_pretrained(
"ssong1/gpt-j-5.8b", torch_dtype="auto", device_map="auto"
)
lora_path = "ssong1/gpt-j-5.8b-sum-adapter"
model2 = PeftModel.from_pretrained(model1, lora_path, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(lora_path)
prompt_template = """\
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""
msg = "Q:๋ค์ ๋ฌธ์๋ฅผ ์์ฝ ํ์ธ์, Context:{context}"
system_prompt = "You are an AI assistant. User will you give you a task. Your goal is to complete the task as faithfully as you can."
context="""\
"""
tokens = tokenizer.encode(
prompt_template.format(
system_prompt=system_prompt,
prompt=msg.format(context=context),
),
return_tensors="pt",
).to(device="auto", non_blocking=True)
gen_tokens = model2.generate(
input_ids=tokens,
do_sample=False,
temperature=0.5,
max_length=1024,
pad_token_id=63999,
eos_token_id=63999,
)
inputs = tokenizer.batch_decode([gen_tokens[0][: tokens[0].shape[0]]])[0]
generated = tokenizer.batch_decode([gen_tokens[0][tokens[0].shape[0] :]])[0].replace(
"<|im_end|>", ""
)
print(inputs)
print("\ngenerated:")
print(generated)
Framework versions
- PEFT 0.7.1