Visualize in Weights & Biases

zephyr-7b-sft-full-orpo

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4701
  • Rewards/chosen: -0.0364
  • Rewards/rejected: -0.0499
  • Rewards/accuracies: 0.6587
  • Rewards/margins: 0.0135
  • Logps/rejected: -0.9978
  • Logps/chosen: -0.7282
  • Logits/rejected: -2.9263
  • Logits/chosen: -2.9434
  • Nll Loss: 0.4357
  • Log Odds Ratio: -0.6093
  • Log Odds Chosen: 0.4456

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: inverse_sqrt
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Nll Loss Log Odds Ratio Log Odds Chosen
0.5226 0.1049 100 0.5280 -0.0386 -0.0472 0.6329 0.0086 -0.9448 -0.7728 -2.7583 -2.7860 0.4953 -0.6326 0.2873
0.5074 0.2098 200 0.5134 -0.0381 -0.0478 0.6409 0.0098 -0.9566 -0.7612 -2.6736 -2.7002 0.4774 -0.6357 0.3190
0.5265 0.3146 300 0.5012 -0.0379 -0.0479 0.6329 0.0099 -0.9572 -0.7588 -2.7317 -2.7594 0.4653 -0.6374 0.3278
0.5194 0.4195 400 0.4912 -0.0371 -0.0478 0.6429 0.0107 -0.9559 -0.7417 -2.6640 -2.6974 0.4560 -0.6284 0.3607
0.5008 0.5244 500 0.4847 -0.0373 -0.0489 0.6508 0.0117 -0.9786 -0.7455 -2.5957 -2.6294 0.4499 -0.6209 0.3873
0.4725 0.6293 600 0.4794 -0.0362 -0.0470 0.6349 0.0107 -0.9394 -0.7248 -2.6147 -2.6477 0.4435 -0.6320 0.3567
0.4875 0.7341 700 0.4767 -0.0368 -0.0498 0.6409 0.0129 -0.9955 -0.7365 -2.6910 -2.7213 0.4416 -0.6158 0.4180
0.4796 0.8390 800 0.4740 -0.0371 -0.0508 0.6508 0.0137 -1.0162 -0.7416 -2.7913 -2.8114 0.4396 -0.6169 0.4363
0.4851 0.9439 900 0.4714 -0.0357 -0.0466 0.6528 0.0109 -0.9324 -0.7143 -2.9543 -2.9692 0.4361 -0.6245 0.3669

Framework versions

  • Transformers 4.41.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
2,847
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for statking/zephyr-7b-sft-full-orpo

Finetuned
(816)
this model
Quantizations
1 model

Dataset used to train statking/zephyr-7b-sft-full-orpo

Spaces using statking/zephyr-7b-sft-full-orpo 6