language: | |
- de | |
- bg | |
- cs | |
- da | |
- el | |
- en | |
- es | |
- et | |
- fi | |
- fr | |
- ga | |
- hr | |
- hu | |
- it | |
- lt | |
- lv | |
- mt | |
- nl | |
- pl | |
- pt | |
- ro | |
- sl | |
- sv | |
- sk | |
metrics: | |
- accuracy | |
- bleu | |
pipeline_tag: text-generation | |
library_name: transformers | |
base_model: openGPT-X/Teuken-7B-instruct-commercial-v0.4 | |
license: apache-2.0 | |
tags: | |
- mlx | |
# stelterlab/Teuken-7B-instruct-commercial-v0.4-MLX-4bit | |
The Model [stelterlab/Teuken-7B-instruct-commercial-v0.4-MLX-4bit](https://huggingface.co/stelterlab/Teuken-7B-instruct-commercial-v0.4-MLX-4bit) was converted to MLX format from [openGPT-X/Teuken-7B-instruct-commercial-v0.4](https://huggingface.co/openGPT-X/Teuken-7B-instruct-commercial-v0.4) using mlx-lm version **0.19.2**. | |
## Use with mlx | |
```bash | |
pip install mlx-lm | |
``` | |
```python | |
from mlx_lm import load, generate | |
model, tokenizer = load("stelterlab/Teuken-7B-instruct-commercial-v0.4-MLX-4bit") | |
prompt="hello" | |
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: | |
messages = [{"role": "user", "content": prompt}] | |
prompt = tokenizer.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
response = generate(model, tokenizer, prompt=prompt, verbose=True) | |
``` | |