Visualize in Weights & Biases

jk2-jsft8

This model is a fine-tuned version of stojchet/jk2 on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2046

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
1.0716 2.56 100 1.2046

Framework versions

  • Transformers 4.43.0.dev0
  • Pytorch 2.2.2+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
11
Safetensors
Model size
1.35B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for stojchet/jk2-jsft8

Finetuned
stojchet/jk2
Finetuned
(2)
this model