metadata
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
datasets:
- cnec
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: CNEC2_0_Supertypes_xlm-roberta-large
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: cnec
type: cnec
config: default
split: validation
args: default
metrics:
- name: Precision
type: precision
value: 0.8675762439807384
- name: Recall
type: recall
value: 0.8930194134655102
- name: F1
type: f1
value: 0.880113983309587
- name: Accuracy
type: accuracy
value: 0.9709981167608286
CNEC2_0_Supertypes_xlm-roberta-large
This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the cnec dataset. It achieves the following results on the evaluation set:
- Loss: 0.1744
- Precision: 0.8676
- Recall: 0.8930
- F1: 0.8801
- Accuracy: 0.9710
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.4736 | 1.0 | 900 | 0.1585 | 0.7678 | 0.8319 | 0.7986 | 0.9597 |
0.1665 | 2.0 | 1800 | 0.1418 | 0.8237 | 0.8550 | 0.8391 | 0.9650 |
0.129 | 3.0 | 2700 | 0.1361 | 0.8299 | 0.8686 | 0.8488 | 0.9682 |
0.0998 | 4.0 | 3600 | 0.1322 | 0.8474 | 0.8852 | 0.8659 | 0.9698 |
0.0867 | 5.0 | 4500 | 0.1479 | 0.8419 | 0.8823 | 0.8616 | 0.9704 |
0.0709 | 6.0 | 5400 | 0.1418 | 0.8539 | 0.8815 | 0.8675 | 0.9708 |
0.0635 | 7.0 | 6300 | 0.1579 | 0.8626 | 0.8819 | 0.8721 | 0.9704 |
0.0512 | 8.0 | 7200 | 0.1624 | 0.8649 | 0.8910 | 0.8777 | 0.9704 |
0.0444 | 9.0 | 8100 | 0.1670 | 0.8702 | 0.8914 | 0.8806 | 0.9712 |
0.0399 | 10.0 | 9000 | 0.1744 | 0.8676 | 0.8930 | 0.8801 | 0.9710 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0