File size: 45,384 Bytes
842c324
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: pickle
model_file: model.pkl
widget:
- structuredData:
    found_in_search_area:
    - true
    - true
    - false
---

# Model description

[More Information Needed]

## Intended uses & limitations

[More Information Needed]

## Training Procedure

[More Information Needed]

### Hyperparameters

<details>
<summary> Click to expand </summary>

| Hyperparameter                                          | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| memory                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| steps                                                   | [('columntransformer', ColumnTransformer(transformers=[('standardscaler', StandardScaler(),<br />                                 ['location_found_elevation']),<br />                                ('onehotencoder', OneHotEncoder(),<br />                                 ['situation'])])), ('randomforestclassifier', RandomForestClassifier(class_weight={np.False_: np.float64(1.9217032967032968),<br />                                     np.True_: np.float64(0.6758454106280193)},<br />                       random_state=42))] |
| transform_input                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| verbose                                                 | False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| columntransformer                                       | ColumnTransformer(transformers=[('standardscaler', StandardScaler(),<br />                                 ['location_found_elevation']),<br />                                ('onehotencoder', OneHotEncoder(),<br />                                 ['situation'])])                                                                                                                                                                                                                                                               |
| randomforestclassifier                                  | RandomForestClassifier(class_weight={np.False_: np.float64(1.9217032967032968),<br />                                     np.True_: np.float64(0.6758454106280193)},<br />                       random_state=42)                                                                                                                                                                                                                                                                                                                 |
| columntransformer__force_int_remainder_cols             | True                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| columntransformer__n_jobs                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| columntransformer__remainder                            | drop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| columntransformer__sparse_threshold                     | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| columntransformer__transformer_weights                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| columntransformer__transformers                         | [('standardscaler', StandardScaler(), ['location_found_elevation']), ('onehotencoder', OneHotEncoder(), ['situation'])]                                                                                                                                                                                                                                                                                                                                                                                                 |
| columntransformer__verbose                              | False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| columntransformer__verbose_feature_names_out            | True                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| columntransformer__standardscaler                       | StandardScaler()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| columntransformer__onehotencoder                        | OneHotEncoder()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| columntransformer__standardscaler__copy                 | True                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| columntransformer__standardscaler__with_mean            | True                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| columntransformer__standardscaler__with_std             | True                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| columntransformer__onehotencoder__categories            | auto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| columntransformer__onehotencoder__drop                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| columntransformer__onehotencoder__dtype                 | <class 'numpy.float64'>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| columntransformer__onehotencoder__feature_name_combiner | concat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| columntransformer__onehotencoder__handle_unknown        | error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| columntransformer__onehotencoder__max_categories        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| columntransformer__onehotencoder__min_frequency         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| columntransformer__onehotencoder__sparse_output         | True                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| randomforestclassifier__bootstrap                       | True                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| randomforestclassifier__ccp_alpha                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| randomforestclassifier__class_weight                    | {np.False_: np.float64(1.9217032967032968), np.True_: np.float64(0.6758454106280193)}                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| randomforestclassifier__criterion                       | gini                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| randomforestclassifier__max_depth                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| randomforestclassifier__max_features                    | sqrt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| randomforestclassifier__max_leaf_nodes                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| randomforestclassifier__max_samples                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| randomforestclassifier__min_impurity_decrease           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| randomforestclassifier__min_samples_leaf                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| randomforestclassifier__min_samples_split               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| randomforestclassifier__min_weight_fraction_leaf        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| randomforestclassifier__monotonic_cst                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| randomforestclassifier__n_estimators                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| randomforestclassifier__n_jobs                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| randomforestclassifier__oob_score                       | False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| randomforestclassifier__random_state                    | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| randomforestclassifier__verbose                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| randomforestclassifier__warm_start                      | False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

</details>

### Model Plot

<style>#sk-container-id-1 {/* Definition of color scheme common for light and dark mode */--sklearn-color-text: #000;--sklearn-color-text-muted: #666;--sklearn-color-line: gray;/* Definition of color scheme for unfitted estimators */--sklearn-color-unfitted-level-0: #fff5e6;--sklearn-color-unfitted-level-1: #f6e4d2;--sklearn-color-unfitted-level-2: #ffe0b3;--sklearn-color-unfitted-level-3: chocolate;/* Definition of color scheme for fitted estimators */--sklearn-color-fitted-level-0: #f0f8ff;--sklearn-color-fitted-level-1: #d4ebff;--sklearn-color-fitted-level-2: #b3dbfd;--sklearn-color-fitted-level-3: cornflowerblue;/* Specific color for light theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-icon: #696969;@media (prefers-color-scheme: dark) {/* Redefinition of color scheme for dark theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-icon: #878787;}
}#sk-container-id-1 {color: var(--sklearn-color-text);
}#sk-container-id-1 pre {padding: 0;
}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;
}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed var(--sklearn-color-line);margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: var(--sklearn-color-background);
}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }`but bootstrap.min.css set `[hidden] { display: none !important; }`so we also need the `!important` here to be able to override thedefault hidden behavior on the sphinx rendered scikit-learn.org.See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;
}#sk-container-id-1 div.sk-text-repr-fallback {display: none;
}div.sk-parallel-item,
div.sk-serial,
div.sk-item {/* draw centered vertical line to link estimators */background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));background-size: 2px 100%;background-repeat: no-repeat;background-position: center center;
}/* Parallel-specific style estimator block */#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 2px solid var(--sklearn-color-text-on-default-background);flex-grow: 1;
}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: var(--sklearn-color-background);position: relative;
}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;
}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;
}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;
}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;
}/* Serial-specific style estimator block */#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: var(--sklearn-color-background);padding-right: 1em;padding-left: 1em;
}/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
clickable and can be expanded/collapsed.
- Pipeline and ColumnTransformer use this feature and define the default style
- Estimators will overwrite some part of the style using the `sk-estimator` class
*//* Pipeline and ColumnTransformer style (default) */#sk-container-id-1 div.sk-toggleable {/* Default theme specific background. It is overwritten whether we have aspecific estimator or a Pipeline/ColumnTransformer */background-color: var(--sklearn-color-background);
}/* Toggleable label */
#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: flex;width: 100%;margin-bottom: 0;padding: 0.5em;box-sizing: border-box;text-align: center;align-items: start;justify-content: space-between;gap: 0.5em;
}#sk-container-id-1 label.sk-toggleable__label .caption {font-size: 0.6rem;font-weight: lighter;color: var(--sklearn-color-text-muted);
}#sk-container-id-1 label.sk-toggleable__label-arrow:before {/* Arrow on the left of the label */content: "▸";float: left;margin-right: 0.25em;color: var(--sklearn-color-icon);
}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: var(--sklearn-color-text);
}/* Toggleable content - dropdown */#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
}#sk-container-id-1 div.sk-toggleable__content.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;border-radius: 0.25em;color: var(--sklearn-color-text);/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
}#sk-container-id-1 div.sk-toggleable__content.fitted pre {/* unfitted */background-color: var(--sklearn-color-fitted-level-0);
}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {/* Expand drop-down */max-height: 200px;max-width: 100%;overflow: auto;
}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";
}/* Pipeline/ColumnTransformer-specific style */#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
}#sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: var(--sklearn-color-fitted-level-2);
}/* Estimator-specific style *//* Colorize estimator box */
#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
}#sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
}#sk-container-id-1 div.sk-label label.sk-toggleable__label,
#sk-container-id-1 div.sk-label label {/* The background is the default theme color */color: var(--sklearn-color-text-on-default-background);
}/* On hover, darken the color of the background */
#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
}/* Label box, darken color on hover, fitted */
#sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {color: var(--sklearn-color-text);background-color: var(--sklearn-color-fitted-level-2);
}/* Estimator label */#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;
}#sk-container-id-1 div.sk-label-container {text-align: center;
}/* Estimator-specific */
#sk-container-id-1 div.sk-estimator {font-family: monospace;border: 1px dotted var(--sklearn-color-border-box);border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
}#sk-container-id-1 div.sk-estimator.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
}/* on hover */
#sk-container-id-1 div.sk-estimator:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
}#sk-container-id-1 div.sk-estimator.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
}/* Specification for estimator info (e.g. "i" and "?") *//* Common style for "i" and "?" */.sk-estimator-doc-link,
a:link.sk-estimator-doc-link,
a:visited.sk-estimator-doc-link {float: right;font-size: smaller;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1em;height: 1em;width: 1em;text-decoration: none !important;margin-left: 0.5em;text-align: center;/* unfitted */border: var(--sklearn-color-unfitted-level-1) 1pt solid;color: var(--sklearn-color-unfitted-level-1);
}.sk-estimator-doc-link.fitted,
a:link.sk-estimator-doc-link.fitted,
a:visited.sk-estimator-doc-link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
}/* On hover */
div.sk-estimator:hover .sk-estimator-doc-link:hover,
.sk-estimator-doc-link:hover,
div.sk-label-container:hover .sk-estimator-doc-link:hover,
.sk-estimator-doc-link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
}div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,
.sk-estimator-doc-link.fitted:hover,
div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
.sk-estimator-doc-link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
}/* Span, style for the box shown on hovering the info icon */
.sk-estimator-doc-link span {display: none;z-index: 9999;position: relative;font-weight: normal;right: .2ex;padding: .5ex;margin: .5ex;width: min-content;min-width: 20ex;max-width: 50ex;color: var(--sklearn-color-text);box-shadow: 2pt 2pt 4pt #999;/* unfitted */background: var(--sklearn-color-unfitted-level-0);border: .5pt solid var(--sklearn-color-unfitted-level-3);
}.sk-estimator-doc-link.fitted span {/* fitted */background: var(--sklearn-color-fitted-level-0);border: var(--sklearn-color-fitted-level-3);
}.sk-estimator-doc-link:hover span {display: block;
}/* "?"-specific style due to the `<a>` HTML tag */#sk-container-id-1 a.estimator_doc_link {float: right;font-size: 1rem;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1rem;height: 1rem;width: 1rem;text-decoration: none;/* unfitted */color: var(--sklearn-color-unfitted-level-1);border: var(--sklearn-color-unfitted-level-1) 1pt solid;
}#sk-container-id-1 a.estimator_doc_link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
}/* On hover */
#sk-container-id-1 a.estimator_doc_link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
}#sk-container-id-1 a.estimator_doc_link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);
}
</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;columntransformer&#x27;,ColumnTransformer(transformers=[(&#x27;standardscaler&#x27;,StandardScaler(),[&#x27;location_found_elevation&#x27;]),(&#x27;onehotencoder&#x27;,OneHotEncoder(),[&#x27;situation&#x27;])])),(&#x27;randomforestclassifier&#x27;,RandomForestClassifier(class_weight={np.False_: np.float64(1.9217032967032968),np.True_: np.float64(0.6758454106280193)},random_state=42))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>Pipeline</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.pipeline.Pipeline.html">?<span>Documentation for Pipeline</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></div></label><div class="sk-toggleable__content fitted"><pre>Pipeline(steps=[(&#x27;columntransformer&#x27;,ColumnTransformer(transformers=[(&#x27;standardscaler&#x27;,StandardScaler(),[&#x27;location_found_elevation&#x27;]),(&#x27;onehotencoder&#x27;,OneHotEncoder(),[&#x27;situation&#x27;])])),(&#x27;randomforestclassifier&#x27;,RandomForestClassifier(class_weight={np.False_: np.float64(1.9217032967032968),np.True_: np.float64(0.6758454106280193)},random_state=42))])</pre></div> </div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>columntransformer: ColumnTransformer</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.compose.ColumnTransformer.html">?<span>Documentation for columntransformer: ColumnTransformer</span></a></div></label><div class="sk-toggleable__content fitted"><pre>ColumnTransformer(transformers=[(&#x27;standardscaler&#x27;, StandardScaler(),[&#x27;location_found_elevation&#x27;]),(&#x27;onehotencoder&#x27;, OneHotEncoder(),[&#x27;situation&#x27;])])</pre></div> </div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>standardscaler</div></div></label><div class="sk-toggleable__content fitted"><pre>[&#x27;location_found_elevation&#x27;]</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-4" type="checkbox" ><label for="sk-estimator-id-4" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>StandardScaler</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.preprocessing.StandardScaler.html">?<span>Documentation for StandardScaler</span></a></div></label><div class="sk-toggleable__content fitted"><pre>StandardScaler()</pre></div> </div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-5" type="checkbox" ><label for="sk-estimator-id-5" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>onehotencoder</div></div></label><div class="sk-toggleable__content fitted"><pre>[&#x27;situation&#x27;]</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-6" type="checkbox" ><label for="sk-estimator-id-6" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>OneHotEncoder</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.preprocessing.OneHotEncoder.html">?<span>Documentation for OneHotEncoder</span></a></div></label><div class="sk-toggleable__content fitted"><pre>OneHotEncoder()</pre></div> </div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-7" type="checkbox" ><label for="sk-estimator-id-7" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>RandomForestClassifier</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.6/modules/generated/sklearn.ensemble.RandomForestClassifier.html">?<span>Documentation for RandomForestClassifier</span></a></div></label><div class="sk-toggleable__content fitted"><pre>RandomForestClassifier(class_weight={np.False_: np.float64(1.9217032967032968),np.True_: np.float64(0.6758454106280193)},random_state=42)</pre></div> </div></div></div></div></div></div>

## Evaluation Results

| Metric   |    Value |
|----------|----------|
| accuracy | 0.698333 |
| f1_score | 0.698018 |

# How to Get Started with the Model

[More Information Needed]

# Model Card Authors

This model card is written by following authors:

[More Information Needed]

# Model Card Contact

You can contact the model card authors through following channels:
[More Information Needed]

# Citation

Below you can find information related to citation.

**BibTeX:**
```
[More Information Needed]
```

# model_description

RandomForestClassifier model for tabular classification.

# eval_method

Evaluated using test split.

# confusion_matrix

![confusion_matrix](AI4SAR-model/confusion_matrix.png)