qwen2.5-72b-openreviewer-mvp-1-full-review-r128
This model is a fine-tuned version of Qwen/Qwen2.5-72B on the openreview_full_review dataset. It achieves the following results on the evaluation set:
- Loss: 1.3836
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.532 | 0.5091 | 600 | 1.5193 |
1.4402 | 1.0182 | 1200 | 1.4956 |
1.434 | 1.5274 | 1800 | 1.4622 |
1.2638 | 2.0365 | 2400 | 1.4360 |
1.2456 | 2.5456 | 3000 | 1.4051 |
1.104 | 3.0547 | 3600 | 1.3918 |
1.0918 | 3.5639 | 4200 | 1.3742 |
1.0143 | 4.0730 | 4800 | 1.3840 |
1.0092 | 4.5821 | 5400 | 1.3840 |
Framework versions
- PEFT 0.12.0
- Transformers 4.46.1
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 11
Model tree for sumuks/qwen2.5-72b-openreviewer-mvp-1-full-review-r128
Base model
Qwen/Qwen2.5-72B