SpanMarker

This is a SpanMarker model trained on the conll2003 dataset that can be used for Named Entity Recognition.

Model Details

Model Description

  • Model Type: SpanMarker
  • Maximum Sequence Length: 256 tokens
  • Maximum Entity Length: 8 words
  • Training Dataset: conll2003

Model Sources

Model Labels

Label Examples
LOC "BRUSSELS", "Britain", "Germany"
MISC "British", "EU-wide", "German"
ORG "European Union", "EU", "European Commission"
PER "Nikolaus van der Pas", "Peter Blackburn", "Werner Zwingmann"

Evaluation

Metrics

Label Precision Recall F1
all 0.9156 0.9263 0.9210
LOC 0.9327 0.9394 0.9361
MISC 0.7973 0.8462 0.8210
ORG 0.8987 0.9133 0.9059
PER 0.9706 0.9610 0.9658

Uses

Direct Use for Inference

from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("supreethrao/instructNER_conll03_xl")
# Run inference
entities = model.predict("Dong Jiong (China) beat Thomas Stuer-Lauridsen (Denmark) 15-10 15-6")

Downstream Use

You can finetune this model on your own dataset.

Click to expand
from span_marker import SpanMarkerModel, Trainer

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("supreethrao/instructNER_conll03_xl")

# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003

# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
    model=model,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("supreethrao/instructNER_conll03_xl-finetuned")

Training Details

Training Set Metrics

Training set Min Median Max
Sentence length 1 14.5019 113
Entities per sentence 0 1.6736 20

Training Hyperparameters

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Framework Versions

  • Python: 3.10.13
  • SpanMarker: 1.5.0
  • Transformers: 4.35.2
  • PyTorch: 2.1.1
  • Datasets: 2.15.0
  • Tokenizers: 0.15.0

Citation

BibTeX

@software{Aarsen_SpanMarker,
    author = {Aarsen, Tom},
    license = {Apache-2.0},
    title = {{SpanMarker for Named Entity Recognition}},
    url = {https://github.com/tomaarsen/SpanMarkerNER}
}
Downloads last month
599
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train supreethrao/instructNER_conll03_xl

Evaluation results