metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-a-clp-ls
results: []
whisper-a-clp-ls
This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0240
- Wer: 10.0629
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 132
- num_epochs: 11
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
No log | 1.0 | 40 | 0.1713 | 46.9602 |
No log | 2.0 | 80 | 0.0920 | 28.3019 |
1.2158 | 3.0 | 120 | 0.1828 | 31.2369 |
1.2158 | 4.0 | 160 | 0.2743 | 42.3480 |
0.1604 | 5.0 | 200 | 0.1326 | 62.8931 |
0.1604 | 6.0 | 240 | 0.0734 | 25.7862 |
0.1604 | 7.0 | 280 | 0.0510 | 15.7233 |
0.0502 | 8.0 | 320 | 0.0262 | 10.4822 |
0.0502 | 9.0 | 360 | 0.0320 | 11.9497 |
0.0202 | 10.0 | 400 | 0.0229 | 7.1279 |
0.0202 | 10.7342 | 429 | 0.0240 | 10.0629 |
Framework versions
- Transformers 4.47.0.dev0
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0