whisper-a-nomi-18 / README.md
susmitabhatt's picture
End of training
970cc2d verified
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-a-nomi-18
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-a-nomi-18
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0346
- Wer: 14.4772
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 132
- num_epochs: 18
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| No log | 1.0 | 88 | 0.0813 | 11.4388 |
| 0.944 | 2.0 | 176 | 0.0636 | 11.2601 |
| 0.1726 | 3.0 | 264 | 0.0395 | 16.1752 |
| 0.0661 | 4.0 | 352 | 0.0895 | 25.7373 |
| 0.145 | 5.0 | 440 | 0.0627 | 19.9285 |
| 0.0218 | 6.0 | 528 | 0.0481 | 8.3110 |
| 0.0187 | 7.0 | 616 | 0.0782 | 23.0563 |
| 0.0282 | 8.0 | 704 | 0.0435 | 16.6220 |
| 0.0282 | 9.0 | 792 | 0.0284 | 11.7069 |
| 0.0055 | 10.0 | 880 | 0.0338 | 17.0688 |
| 0.0027 | 11.0 | 968 | 0.0463 | 17.3369 |
| 0.0039 | 12.0 | 1056 | 0.0362 | 11.6175 |
| 0.0038 | 13.0 | 1144 | 0.0353 | 14.6559 |
| 0.0014 | 14.0 | 1232 | 0.0347 | 14.5666 |
| 0.0 | 15.0 | 1320 | 0.0346 | 14.4772 |
| 0.0 | 16.0 | 1408 | 0.0346 | 14.4772 |
| 0.0 | 17.0 | 1496 | 0.0346 | 14.4772 |
| 0.0 | 18.0 | 1584 | 0.0346 | 14.4772 |
### Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.4.0
- Datasets 3.1.0
- Tokenizers 0.21.0