metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-a-nomimose-again
results: []
whisper-a-nomimose-again
This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0252
- Wer: 192.9941
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 132
- num_epochs: 9
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.2606 | 0.9217 | 100 | 0.2230 | 39.7493 |
0.2758 | 1.8387 | 200 | 0.1259 | 41.2979 |
0.0716 | 2.7558 | 300 | 0.0491 | 24.1888 |
0.0433 | 3.6728 | 400 | 0.0618 | 25.7375 |
0.0339 | 4.5899 | 500 | 0.0383 | 184.0708 |
0.0211 | 5.5069 | 600 | 0.0418 | 139.3068 |
0.0154 | 6.4240 | 700 | 0.0424 | 195.4277 |
0.0095 | 7.3410 | 800 | 0.0251 | 186.2832 |
0.0059 | 8.2581 | 900 | 0.0252 | 192.9941 |
Framework versions
- Transformers 4.47.0.dev0
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0