metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-nm-no-ls
results: []
whisper-nm-no-ls
This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1565
- Wer: 11.1562
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 132
- num_epochs: 11
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
No log | 1.0 | 33 | 0.1768 | 8.9249 |
No log | 2.0 | 66 | 0.2439 | 20.8925 |
No log | 3.0 | 99 | 0.4285 | 255.7809 |
1.2232 | 4.0 | 132 | 0.2449 | 26.3692 |
1.2232 | 5.0 | 165 | 0.5282 | 37.9310 |
1.2232 | 6.0 | 198 | 0.2170 | 25.3550 |
0.3525 | 7.0 | 231 | 0.1980 | 74.4422 |
0.3525 | 8.0 | 264 | 0.1585 | 14.6045 |
0.3525 | 9.0 | 297 | 0.1963 | 18.0527 |
0.0919 | 10.0 | 330 | 0.1787 | 12.9817 |
0.0919 | 11.0 | 363 | 0.1565 | 11.1562 |
Framework versions
- Transformers 4.47.0.dev0
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0