base_model: | |
- openai/clip-vit-base-patch32 | |
datasets: | |
- tanganke/stanford_cars | |
metrics: | |
- accuracy | |
# Model Card | |
## Model Details | |
- Architecture: ViT-Base with patch size 32 | |
- Training Data: Standford Cars dataset | |
## Training Details | |
Adam Optimizer with a constant learning rate 1e-5 for 4000 steps training (batch_size=32). | |
Only the vision encoder is fine-tuned. | |
## Evaluation Results | |
- pre-trained: 0.5987 | |
- fine-tuned: 0.7819 | |
## Usage | |
load vision model | |
```python | |
from transformers import CLIPVisionModel | |
vision_model = CLIPVisionModel.from_pretrained('tanganke/clip-vit-base-patch32_stanford-cars') | |
``` | |
substitute the vision encoder of clip | |
```python | |
from transformers import CLIPModel | |
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") | |
clip_model.vision_model.load_state_dict(vision_model.vision_model.state_dict()) | |
``` | |