hyenadna-large-1m-seqlen-hf_ft_BioS2_1kbpHG19_DHSs_H3K27AC

This model is a fine-tuned version of LongSafari/hyenadna-large-1m-seqlen-hf on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4430
  • F1 Score: 0.8169
  • Precision: 0.7917
  • Recall: 0.8438
  • Accuracy: 0.7974
  • Auc: 0.8771
  • Prc: 0.8787

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Score Precision Recall Accuracy Auc Prc
0.598 0.0840 500 0.5571 0.7836 0.6895 0.9075 0.7316 0.7867 0.7596
0.5439 0.1680 1000 0.5309 0.7878 0.7135 0.8793 0.7462 0.8020 0.7858
0.5302 0.2519 1500 0.5200 0.7724 0.7550 0.7905 0.7504 0.8137 0.8022
0.5293 0.3359 2000 0.5046 0.7929 0.7520 0.8385 0.7654 0.8256 0.8146
0.51 0.4199 2500 0.5110 0.7957 0.7146 0.8975 0.7531 0.8244 0.8170
0.5205 0.5039 3000 0.5003 0.7980 0.7232 0.8899 0.7586 0.8281 0.8179
0.5153 0.5878 3500 0.5101 0.7715 0.7793 0.7639 0.7576 0.8388 0.8324
0.5097 0.6718 4000 0.4971 0.7986 0.7410 0.8658 0.7660 0.8402 0.8344
0.5164 0.7558 4500 0.4982 0.7728 0.7979 0.7491 0.7640 0.8468 0.8401
0.4978 0.8398 5000 0.4807 0.8065 0.7440 0.8805 0.7738 0.8499 0.8437
0.4744 0.9237 5500 0.4778 0.7867 0.7886 0.7849 0.7721 0.8501 0.8480
0.4762 1.0077 6000 0.4849 0.8097 0.7311 0.9072 0.7716 0.8552 0.8519
0.4707 1.0917 6500 0.4599 0.8096 0.7700 0.8536 0.7850 0.8602 0.8547
0.4612 1.1757 7000 0.4724 0.7988 0.7954 0.8021 0.7835 0.8597 0.8588
0.4654 1.2597 7500 0.4670 0.8079 0.7584 0.8642 0.7798 0.8620 0.8616
0.456 1.3436 8000 0.4669 0.8108 0.7797 0.8445 0.7889 0.8645 0.8652
0.4655 1.4276 8500 0.4679 0.7951 0.8026 0.7877 0.7825 0.8647 0.8664
0.4447 1.5116 9000 0.4554 0.8156 0.7648 0.8736 0.7884 0.8650 0.8631
0.4663 1.5956 9500 0.4563 0.8035 0.7986 0.8084 0.7882 0.8682 0.8680
0.4526 1.6795 10000 0.4769 0.7937 0.8004 0.7871 0.7808 0.8682 0.8700
0.4457 1.7635 10500 0.4533 0.7992 0.8009 0.7974 0.7854 0.8687 0.8698
0.4391 1.8475 11000 0.4493 0.8186 0.7700 0.8736 0.7926 0.8705 0.8687
0.4448 1.9315 11500 0.4461 0.8193 0.7696 0.8758 0.7931 0.8715 0.8737
0.4359 2.0155 12000 0.4450 0.8178 0.7773 0.8627 0.7941 0.8736 0.8763
0.4268 2.0994 12500 0.4724 0.7931 0.8190 0.7689 0.7852 0.8732 0.8746
0.4254 2.1834 13000 0.4438 0.8198 0.7623 0.8868 0.7912 0.8756 0.8726
0.4289 2.2674 13500 0.4556 0.8203 0.7503 0.9047 0.7877 0.8726 0.8706
0.4315 2.3514 14000 0.4621 0.8060 0.7606 0.8570 0.7790 0.8647 0.8630
0.4226 2.4353 14500 0.5973 0.7535 0.8545 0.6739 0.7639 0.8696 0.8723
0.4331 2.5193 15000 0.4589 0.8198 0.7959 0.8451 0.8010 0.8762 0.8770
0.4216 2.6033 15500 0.5026 0.7937 0.8263 0.7636 0.7874 0.8758 0.8783
0.4449 2.6873 16000 0.4430 0.8169 0.7917 0.8438 0.7974 0.8771 0.8787

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.0
Downloads last month
2
Inference API
Unable to determine this model's library. Check the docs .

Model tree for tanoManzo/hyenadna-large-1m-seqlen-hf_ft_BioS2_1kbpHG19_DHSs_H3K27AC

Finetuned
(8)
this model