Uploaded model

  • Developed by: taoki
  • License: apache-2.0
  • Finetuned from model : mistralai/Mistral-7B-Instruct-v0.3

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

tokenizer = AutoTokenizer.from_pretrained(
  "taoki/Mistral-7B-Instruct-v0.3_lora_jmultiwoz-dolly-amenokaku-alpaca_jp_python"
)
model = AutoModelForCausalLM.from_pretrained(
  "taoki/Mistral-7B-Instruct-v0.3_lora_jmultiwoz-dolly-amenokaku-alpaca_jp_python"
)

if torch.cuda.is_available():
    model = model.to("cuda")

prompt="""[INST] OpenCVを用いて定点カメラから画像を保存するコードを示してください。 [/INST]"""

input_ids = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
    **input_ids,
    max_new_tokens=512,
    do_sample=True,
    top_p=0.9,
    temperature=0.2,
    repetition_penalty=1.1,
)
print(tokenizer.decode(outputs[0]))

Output

<s>[INST] OpenCVを用いて定点カメラから画像を保存するコードを示してください。 [/INST]```python
import cv2

# カメラの設定
cap = cv2.VideoCapture(0)

# フレーム数
frame_count = 10

# 画像の保存
for i in range(frame_count):
    # フレームの取得
    ret, frame = cap.read()

    # 画像の保存
    cv2.imwrite('image_{}.jpg'.format(i), frame)

# カメラの終了
cap.release()
```</s>
Downloads last month
25
Safetensors
Model size
7.25B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for taoki/Mistral-7B-Instruct-v0.3_lora_jmultiwoz-dolly-amenokaku-alpaca_jp_python

Finetuned
(97)
this model

Datasets used to train taoki/Mistral-7B-Instruct-v0.3_lora_jmultiwoz-dolly-amenokaku-alpaca_jp_python