Uploaded model

  • Developed by: taoki
  • License: apache-2.0
  • Finetuned from model : tokyotech-llm/Swallow-MS-7b-v0.1

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

tokenizer = AutoTokenizer.from_pretrained(
  "taoki/Swallow-MS-7b-v0.1-qlora-amenokaku-code"
)
model = AutoModelForCausalLM.from_pretrained(
  "taoki/Swallow-MS-7b-v0.1-qlora-amenokaku-code"
)

if torch.cuda.is_available():
  model = model.to("cuda")

prompt="""### Instruction:
光の三原色は?
### Response:
"""

input_ids = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
  **input_ids,
  max_new_tokens=512,
  do_sample=True,
  top_p=0.95,
  temperature=0.1,
  repetition_penalty=1.0,
)
print(tokenizer.decode(outputs[0]))

Output

<s>### Instruction:
光の三原色は?
### Response:
 ```python
print('赤')
print('緑')
print('青')
```</s>

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

Downloads last month
7
Safetensors
Model size
7.33B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for taoki/Swallow-MS-7b-v0.1-qlora-amenokaku-code

Finetuned
(4)
this model
Quantizations
1 model

Dataset used to train taoki/Swallow-MS-7b-v0.1-qlora-amenokaku-code