See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: tiiuae/falcon-rw-1b
batch_size: 2
bf16: auto
dataset_prepared_path: null
datasets:
- data_files:
- 4a71a81bf9963904_train_data.json
ds_type: json
format: custom
path: 4a71a81bf9963904_train_data.json
type:
field: null
field_input: context
field_instruction: question
field_output: answer
field_system: null
format: null
no_input_format: null
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
evals_per_epoch: 2
flash_attention: null
fp16: null
fsdp: null
fsdp_config: null
gptq: false
gptq_groupsize: null
gptq_model_v1: null
gradient_checkpointing: true
group_by_length: false
hub_model_id: taopanda-1/9a780296-4d62-4c7f-ba54-ae2ba31ec343
learning_rate: 3.0e-05
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.0
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules: null
lr_scheduler: cosine
max_packed_sequence_len: null
micro_batch_size: 1
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: ./outputs/falcon-7b/taopanda-1_b7683979-658e-429a-ab3b-266769f33e1a
push_dataset_to_hub: null
resume_from_checkpoint: null
saves_per_epoch: 1
seed: 44816
sequence_len: 2048
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
torchdistx_path: null
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: fatcat87-taopanda
wandb_log_model: null
wandb_mode: online
wandb_name: taopanda-1_b7683979-658e-429a-ab3b-266769f33e1a
wandb_project: subnet56
wandb_runid: taopanda-1_b7683979-658e-429a-ab3b-266769f33e1a
wandb_watch: null
warmup_steps: 40
weight_decay: 0.0
xformers_attention: true
9a780296-4d62-4c7f-ba54-ae2ba31ec343
This model is a fine-tuned version of tiiuae/falcon-rw-1b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0378
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 44816
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 40
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.5499 | 0.0001 | 1 | 1.6791 |
0.1081 | 0.5000 | 9320 | 0.0378 |
Framework versions
- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for taopanda-1/9a780296-4d62-4c7f-ba54-ae2ba31ec343
Base model
tiiuae/falcon-rw-1b