metadata
license: apache-2.0
library_name: transformers
datasets:
- vicgalle/configurable-system-prompt-multitask
base_model: vicgalle/ConfigurableSOLAR-10.7B
tags:
- TensorBlock
- GGUF
model-index:
- name: ConfigurableSOLAR-10.7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 51
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=vicgalle/ConfigurableSOLAR-10.7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 27.45
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=vicgalle/ConfigurableSOLAR-10.7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 0
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=vicgalle/ConfigurableSOLAR-10.7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.49
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=vicgalle/ConfigurableSOLAR-10.7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 5.19
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=vicgalle/ConfigurableSOLAR-10.7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 24.15
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=vicgalle/ConfigurableSOLAR-10.7B
name: Open LLM Leaderboard
Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
vicgalle/ConfigurableSOLAR-10.7B - GGUF
This repo contains GGUF format model files for vicgalle/ConfigurableSOLAR-10.7B.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.
Prompt template
### System:
{system_prompt}
### User:
{prompt}
### Assistant:
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
ConfigurableSOLAR-10.7B-Q2_K.gguf | Q2_K | 3.728 GB | smallest, significant quality loss - not recommended for most purposes |
ConfigurableSOLAR-10.7B-Q3_K_S.gguf | Q3_K_S | 4.344 GB | very small, high quality loss |
ConfigurableSOLAR-10.7B-Q3_K_M.gguf | Q3_K_M | 4.839 GB | very small, high quality loss |
ConfigurableSOLAR-10.7B-Q3_K_L.gguf | Q3_K_L | 5.263 GB | small, substantial quality loss |
ConfigurableSOLAR-10.7B-Q4_0.gguf | Q4_0 | 5.655 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
ConfigurableSOLAR-10.7B-Q4_K_S.gguf | Q4_K_S | 5.698 GB | small, greater quality loss |
ConfigurableSOLAR-10.7B-Q4_K_M.gguf | Q4_K_M | 6.018 GB | medium, balanced quality - recommended |
ConfigurableSOLAR-10.7B-Q5_0.gguf | Q5_0 | 6.889 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
ConfigurableSOLAR-10.7B-Q5_K_S.gguf | Q5_K_S | 6.889 GB | large, low quality loss - recommended |
ConfigurableSOLAR-10.7B-Q5_K_M.gguf | Q5_K_M | 7.076 GB | large, very low quality loss - recommended |
ConfigurableSOLAR-10.7B-Q6_K.gguf | Q6_K | 8.200 GB | very large, extremely low quality loss |
ConfigurableSOLAR-10.7B-Q8_0.gguf | Q8_0 | 10.621 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/ConfigurableSOLAR-10.7B-GGUF --include "ConfigurableSOLAR-10.7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/ConfigurableSOLAR-10.7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'