morriszms's picture
Upload folder using huggingface_hub
20f2e5b verified
metadata
language:
  - en
license: llama3.1
tags:
  - medit-mesh
  - TensorBlock
  - GGUF
base_model: meditsolutions/Llama-3.1-MedIT-SUN-8B
pipeline_tag: text-generation
model-index:
  - name: Llama-3.1-MedIT-SUN-8B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 78.37
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.1-MedIT-SUN-8B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 32
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.1-MedIT-SUN-8B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 20.02
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.1-MedIT-SUN-8B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 7.83
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.1-MedIT-SUN-8B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 9.64
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.1-MedIT-SUN-8B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 32.4
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.1-MedIT-SUN-8B
          name: Open LLM Leaderboard
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

meditsolutions/Llama-3.1-MedIT-SUN-8B - GGUF

This repo contains GGUF format model files for meditsolutions/Llama-3.1-MedIT-SUN-8B.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.

Prompt template

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Cutting Knowledge Date: December 2023
Today Date: 02 Jan 2025

{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>

{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Model file specification

Filename Quant type File Size Description
Llama-3.1-MedIT-SUN-8B-Q2_K.gguf Q2_K 3.179 GB smallest, significant quality loss - not recommended for most purposes
Llama-3.1-MedIT-SUN-8B-Q3_K_S.gguf Q3_K_S 3.665 GB very small, high quality loss
Llama-3.1-MedIT-SUN-8B-Q3_K_M.gguf Q3_K_M 4.019 GB very small, high quality loss
Llama-3.1-MedIT-SUN-8B-Q3_K_L.gguf Q3_K_L 4.322 GB small, substantial quality loss
Llama-3.1-MedIT-SUN-8B-Q4_0.gguf Q4_0 4.661 GB legacy; small, very high quality loss - prefer using Q3_K_M
Llama-3.1-MedIT-SUN-8B-Q4_K_S.gguf Q4_K_S 4.693 GB small, greater quality loss
Llama-3.1-MedIT-SUN-8B-Q4_K_M.gguf Q4_K_M 4.921 GB medium, balanced quality - recommended
Llama-3.1-MedIT-SUN-8B-Q5_0.gguf Q5_0 5.599 GB legacy; medium, balanced quality - prefer using Q4_K_M
Llama-3.1-MedIT-SUN-8B-Q5_K_S.gguf Q5_K_S 5.599 GB large, low quality loss - recommended
Llama-3.1-MedIT-SUN-8B-Q5_K_M.gguf Q5_K_M 5.733 GB large, very low quality loss - recommended
Llama-3.1-MedIT-SUN-8B-Q6_K.gguf Q6_K 6.596 GB very large, extremely low quality loss
Llama-3.1-MedIT-SUN-8B-Q8_0.gguf Q8_0 8.541 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/Llama-3.1-MedIT-SUN-8B-GGUF --include "Llama-3.1-MedIT-SUN-8B-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/Llama-3.1-MedIT-SUN-8B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'