Lumina-3.5-GGUF / README.md
morriszms's picture
Update README.md
a30b5c1 verified
metadata
license: apache-2.0
tags:
  - moe
  - frankenmoe
  - merge
  - mergekit
  - lazymergekit
  - TensorBlock
  - GGUF
base_model: Ppoyaa/Lumina-3.5
model-index:
  - name: Lumina-3.5
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 71.59
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Ppoyaa/Lumina-3.5
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 88.82
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Ppoyaa/Lumina-3.5
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 64.48
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Ppoyaa/Lumina-3.5
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 75.66
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Ppoyaa/Lumina-3.5
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 83.98
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Ppoyaa/Lumina-3.5
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 67.93
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Ppoyaa/Lumina-3.5
          name: Open LLM Leaderboard
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

Ppoyaa/Lumina-3.5 - GGUF

This repo contains GGUF format model files for Ppoyaa/Lumina-3.5.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template


Model file specification

Filename Quant type File Size Description
Lumina-3.5-Q2_K.gguf Q2_K 6.335 GB smallest, significant quality loss - not recommended for most purposes
Lumina-3.5-Q3_K_S.gguf Q3_K_S 7.460 GB very small, high quality loss
Lumina-3.5-Q3_K_M.gguf Q3_K_M 8.283 GB very small, high quality loss
Lumina-3.5-Q3_K_L.gguf Q3_K_L 8.975 GB small, substantial quality loss
Lumina-3.5-Q4_0.gguf Q4_0 9.734 GB legacy; small, very high quality loss - prefer using Q3_K_M
Lumina-3.5-Q4_K_S.gguf Q4_K_S 9.818 GB small, greater quality loss
Lumina-3.5-Q4_K_M.gguf Q4_K_M 10.427 GB medium, balanced quality - recommended
Lumina-3.5-Q5_0.gguf Q5_0 11.875 GB legacy; medium, balanced quality - prefer using Q4_K_M
Lumina-3.5-Q5_K_S.gguf Q5_K_S 11.875 GB large, low quality loss - recommended
Lumina-3.5-Q5_K_M.gguf Q5_K_M 12.232 GB large, very low quality loss - recommended
Lumina-3.5-Q6_K.gguf Q6_K 14.149 GB very large, extremely low quality loss
Lumina-3.5-Q8_0.gguf Q8_0 18.325 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/Lumina-3.5-GGUF --include "Lumina-3.5-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/Lumina-3.5-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'