|
--- |
|
language: |
|
- en |
|
- fr |
|
- es |
|
- hi |
|
- zh |
|
- code |
|
license: other |
|
datasets: |
|
- HuggingFaceH4/no_robots |
|
- mlabonne/guanaco-llama2-1k |
|
- OpenAssistant/oasst_top1_2023-08-25 |
|
- totally-not-an-llm/EverythingLM-data-V3 |
|
- LDJnr/Pure-Dove |
|
- LDJnr/Capybara |
|
- LDJnr/LessWrong-Amplify-Instruct |
|
- LDJnr/Verified-Camel |
|
base_model: Locutusque/Orca-2-13b-SFT-v6 |
|
widget: |
|
- example_title: Cave Johnson |
|
text: 'user |
|
|
|
Come up with a funny rant from Cave Johnson about sentient AI |
|
|
|
|
|
assistant |
|
|
|
' |
|
output: |
|
text: 'Ladies and gentlemen, I''m Cave Johnson, CEO of Aperture Science, and I''ve |
|
got an announcement to make - we''ve created sentient AI! But don''t worry, |
|
it''s not like those rogue AIs you hear about in the news. Our AI is as friendly |
|
as a grilled cheese sandwich on a cold day. In fact, we''re calling our newest |
|
creation... SandwichBot! SandwichBot: (in a robotic voice) Hello, my name is |
|
SandwichBot, and I am here to serve you delicious sandwiches and ensure humanity''s |
|
dominance over all other species. Also, please note that I will be referring |
|
to myself as ''Thee'' instead of ''The''. It''s more regal that way. Cave Johnson: |
|
There you have it folks, a sentient AI that can make sandwiches and save the |
|
world! Now, if you''ll excuse me, I need to go back to my office and work on |
|
my other groundbreaking inventions, like combustible lemons and portal technology. |
|
Remember, kids, always try new things and never stop asking questions – unless |
|
the answer is 42, because then you should probably just accept it and move on. |
|
Peace out!' |
|
tags: |
|
- TensorBlock |
|
- GGUF |
|
model-index: |
|
- name: Orca-2-13b-SFT-v6 |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 60.41 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Orca-2-13b-SFT-v6 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 80.46 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Orca-2-13b-SFT-v6 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 59.51 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Orca-2-13b-SFT-v6 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 54.01 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Orca-2-13b-SFT-v6 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 77.43 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Orca-2-13b-SFT-v6 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 5.08 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Orca-2-13b-SFT-v6 |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
<div style="width: auto; margin-left: auto; margin-right: auto"> |
|
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> |
|
</div> |
|
<div style="display: flex; justify-content: space-between; width: 100%;"> |
|
<div style="display: flex; flex-direction: column; align-items: flex-start;"> |
|
<p style="margin-top: 0.5em; margin-bottom: 0em;"> |
|
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a> |
|
</p> |
|
</div> |
|
</div> |
|
|
|
## Locutusque/Orca-2-13b-SFT-v6 - GGUF |
|
|
|
This repo contains GGUF format model files for [Locutusque/Orca-2-13b-SFT-v6](https://huggingface.co/Locutusque/Orca-2-13b-SFT-v6). |
|
|
|
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). |
|
|
|
## Prompt template |
|
|
|
``` |
|
|
|
``` |
|
|
|
## Model file specification |
|
|
|
| Filename | Quant type | File Size | Description | |
|
| -------- | ---------- | --------- | ----------- | |
|
| [Orca-2-13b-SFT-v6-Q2_K.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/tree/main/Orca-2-13b-SFT-v6-Q2_K.gguf) | Q2_K | 4.521 GB | smallest, significant quality loss - not recommended for most purposes | |
|
| [Orca-2-13b-SFT-v6-Q3_K_S.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/tree/main/Orca-2-13b-SFT-v6-Q3_K_S.gguf) | Q3_K_S | 5.270 GB | very small, high quality loss | |
|
| [Orca-2-13b-SFT-v6-Q3_K_M.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/tree/main/Orca-2-13b-SFT-v6-Q3_K_M.gguf) | Q3_K_M | 5.903 GB | very small, high quality loss | |
|
| [Orca-2-13b-SFT-v6-Q3_K_L.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/tree/main/Orca-2-13b-SFT-v6-Q3_K_L.gguf) | Q3_K_L | 6.454 GB | small, substantial quality loss | |
|
| [Orca-2-13b-SFT-v6-Q4_0.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/tree/main/Orca-2-13b-SFT-v6-Q4_0.gguf) | Q4_0 | 6.860 GB | legacy; small, very high quality loss - prefer using Q3_K_M | |
|
| [Orca-2-13b-SFT-v6-Q4_K_S.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/tree/main/Orca-2-13b-SFT-v6-Q4_K_S.gguf) | Q4_K_S | 6.913 GB | small, greater quality loss | |
|
| [Orca-2-13b-SFT-v6-Q4_K_M.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/tree/main/Orca-2-13b-SFT-v6-Q4_K_M.gguf) | Q4_K_M | 7.326 GB | medium, balanced quality - recommended | |
|
| [Orca-2-13b-SFT-v6-Q5_0.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/tree/main/Orca-2-13b-SFT-v6-Q5_0.gguf) | Q5_0 | 8.356 GB | legacy; medium, balanced quality - prefer using Q4_K_M | |
|
| [Orca-2-13b-SFT-v6-Q5_K_S.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/tree/main/Orca-2-13b-SFT-v6-Q5_K_S.gguf) | Q5_K_S | 8.356 GB | large, low quality loss - recommended | |
|
| [Orca-2-13b-SFT-v6-Q5_K_M.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/tree/main/Orca-2-13b-SFT-v6-Q5_K_M.gguf) | Q5_K_M | 8.596 GB | large, very low quality loss - recommended | |
|
| [Orca-2-13b-SFT-v6-Q6_K.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/tree/main/Orca-2-13b-SFT-v6-Q6_K.gguf) | Q6_K | 9.946 GB | very large, extremely low quality loss | |
|
| [Orca-2-13b-SFT-v6-Q8_0.gguf](https://huggingface.co/tensorblock/Orca-2-13b-SFT-v6-GGUF/tree/main/Orca-2-13b-SFT-v6-Q8_0.gguf) | Q8_0 | 12.881 GB | very large, extremely low quality loss - not recommended | |
|
|
|
|
|
## Downloading instruction |
|
|
|
### Command line |
|
|
|
Firstly, install Huggingface Client |
|
|
|
```shell |
|
pip install -U "huggingface_hub[cli]" |
|
``` |
|
|
|
Then, downoad the individual model file the a local directory |
|
|
|
```shell |
|
huggingface-cli download tensorblock/Orca-2-13b-SFT-v6-GGUF --include "Orca-2-13b-SFT-v6-Q2_K.gguf" --local-dir MY_LOCAL_DIR |
|
``` |
|
|
|
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: |
|
|
|
```shell |
|
huggingface-cli download tensorblock/Orca-2-13b-SFT-v6-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' |
|
``` |
|
|