metadata
base_model: KingNish/Reasoning-Llama-1b-v0.1
datasets:
- KingNish/reasoning-base-20k
language:
- en
license: llama3.2
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
- reasoning
- llama-3
- TensorBlock
- GGUF
Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
KingNish/Reasoning-Llama-1b-v0.1 - GGUF
This repo contains GGUF format model files for KingNish/Reasoning-Llama-1b-v0.1.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.
Prompt template
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{system_prompt}<|eot_id|>
<|start_header_id|>user<|end_header_id|>
{prompt}<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
Reasoning-Llama-1b-v0.1-Q2_K.gguf | Q2_K | 0.541 GB | smallest, significant quality loss - not recommended for most purposes |
Reasoning-Llama-1b-v0.1-Q3_K_S.gguf | Q3_K_S | 0.598 GB | very small, high quality loss |
Reasoning-Llama-1b-v0.1-Q3_K_M.gguf | Q3_K_M | 0.643 GB | very small, high quality loss |
Reasoning-Llama-1b-v0.1-Q3_K_L.gguf | Q3_K_L | 0.682 GB | small, substantial quality loss |
Reasoning-Llama-1b-v0.1-Q4_0.gguf | Q4_0 | 0.718 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
Reasoning-Llama-1b-v0.1-Q4_K_S.gguf | Q4_K_S | 0.722 GB | small, greater quality loss |
Reasoning-Llama-1b-v0.1-Q4_K_M.gguf | Q4_K_M | 0.752 GB | medium, balanced quality - recommended |
Reasoning-Llama-1b-v0.1-Q5_0.gguf | Q5_0 | 0.831 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
Reasoning-Llama-1b-v0.1-Q5_K_S.gguf | Q5_K_S | 0.831 GB | large, low quality loss - recommended |
Reasoning-Llama-1b-v0.1-Q5_K_M.gguf | Q5_K_M | 0.849 GB | large, very low quality loss - recommended |
Reasoning-Llama-1b-v0.1-Q6_K.gguf | Q6_K | 0.952 GB | very large, extremely low quality loss |
Reasoning-Llama-1b-v0.1-Q8_0.gguf | Q8_0 | 1.230 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/Reasoning-Llama-1b-v0.1-GGUF --include "Reasoning-Llama-1b-v0.1-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/Reasoning-Llama-1b-v0.1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'