morriszms's picture
Upload folder using huggingface_hub
e640117 verified
metadata
license: apache-2.0
tags:
  - finetune
  - fine tune
  - dpo
  - sft
  - yi
  - TensorBlock
  - GGUF
base_model: adamo1139/Yi-34B-200K-AEZAKMI-RAW-1701
model-index:
  - name: Yi-34B-200K-AEZAKMI-RAW-1701
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 66.81
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-RAW-1701
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 85.79
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-RAW-1701
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 75.44
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-RAW-1701
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 57.91
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-RAW-1701
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 80.35
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-RAW-1701
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 59.97
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/Yi-34B-200K-AEZAKMI-RAW-1701
          name: Open LLM Leaderboard
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

adamo1139/Yi-34B-200K-AEZAKMI-RAW-1701 - GGUF

This repo contains GGUF format model files for adamo1139/Yi-34B-200K-AEZAKMI-RAW-1701.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.

Prompt template


Model file specification

Filename Quant type File Size Description
Yi-34B-200K-AEZAKMI-RAW-1701-Q2_K.gguf Q2_K 12.825 GB smallest, significant quality loss - not recommended for most purposes
Yi-34B-200K-AEZAKMI-RAW-1701-Q3_K_S.gguf Q3_K_S 14.960 GB very small, high quality loss
Yi-34B-200K-AEZAKMI-RAW-1701-Q3_K_M.gguf Q3_K_M 16.655 GB very small, high quality loss
Yi-34B-200K-AEZAKMI-RAW-1701-Q3_K_L.gguf Q3_K_L 18.139 GB small, substantial quality loss
Yi-34B-200K-AEZAKMI-RAW-1701-Q4_0.gguf Q4_0 19.467 GB legacy; small, very high quality loss - prefer using Q3_K_M
Yi-34B-200K-AEZAKMI-RAW-1701-Q4_K_S.gguf Q4_K_S 19.599 GB small, greater quality loss
Yi-34B-200K-AEZAKMI-RAW-1701-Q4_K_M.gguf Q4_K_M 20.659 GB medium, balanced quality - recommended
Yi-34B-200K-AEZAKMI-RAW-1701-Q5_0.gguf Q5_0 23.708 GB legacy; medium, balanced quality - prefer using Q4_K_M
Yi-34B-200K-AEZAKMI-RAW-1701-Q5_K_S.gguf Q5_K_S 23.708 GB large, low quality loss - recommended
Yi-34B-200K-AEZAKMI-RAW-1701-Q5_K_M.gguf Q5_K_M 24.322 GB large, very low quality loss - recommended
Yi-34B-200K-AEZAKMI-RAW-1701-Q6_K.gguf Q6_K 28.214 GB very large, extremely low quality loss
Yi-34B-200K-AEZAKMI-RAW-1701-Q8_0.gguf Q8_0 36.542 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/Yi-34B-200K-AEZAKMI-RAW-1701-GGUF --include "Yi-34B-200K-AEZAKMI-RAW-1701-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/Yi-34B-200K-AEZAKMI-RAW-1701-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'