Nero-7B-slerp
Nero-7B-slerp is a merge of the following models using mergekit:
π Performance
Model | AGIEval | GPT4All | TruthfulQA | Bigbench | Average |
---|---|---|---|---|---|
teodortita/Nero-7B-slerp | 41.73 | 73.37 | 58.66 | 43.03 | 54.2 |
mistralai/Mistral-7B-Instruct-v0.2 | 38.68 | 71.64 | 66.85 | 42.28 | 54.86 |
teknium/OpenHermes-2.5-Mistral-7B | 42.82 | 73.04 | 53.02 | 40.99 | 52.47 |
Observe the metrics in bold to see the benchmarks where this merged model overtakes the base models in performance.
𧩠Configuration
slices:
- sources:
- model: mistralai/Mistral-7B-Instruct-v0.2
layer_range: [0, 32]
- model: teknium/OpenHermes-2.5-Mistral-7B
layer_range: [0, 32]
merge_method: slerp
base_model: mistralai/Mistral-7B-Instruct-v0.2
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "teodortita/Nero-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 20
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for teodortita/Nero-7B-slerp
Merge model
this model