Nero-7B-slerp

alt text

Nero-7B-slerp is a merge of the following models using mergekit:

πŸ“ˆ Performance

Model AGIEval GPT4All TruthfulQA Bigbench Average
teodortita/Nero-7B-slerp 41.73 73.37 58.66 43.03 54.2
mistralai/Mistral-7B-Instruct-v0.2 38.68 71.64 66.85 42.28 54.86
teknium/OpenHermes-2.5-Mistral-7B 42.82 73.04 53.02 40.99 52.47

Observe the metrics in bold to see the benchmarks where this merged model overtakes the base models in performance.

🧩 Configuration

slices:
  - sources:
      - model: mistralai/Mistral-7B-Instruct-v0.2
        layer_range: [0, 32]
      - model: teknium/OpenHermes-2.5-Mistral-7B
        layer_range: [0, 32]
merge_method: slerp
base_model: mistralai/Mistral-7B-Instruct-v0.2
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "teodortita/Nero-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
20
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for teodortita/Nero-7B-slerp