BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-large-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-large-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tessimago/bge-large-repmus-matryoshka")
# Run inference
sentences = [
'Sound funding decisions arise out of accurate assessments made of the SAR system. To measure the performance or effectiveness of a SAR system usually requires collecting information or statistics and establishing agreed-upon goals. All pertinent information should be collected, including where the system failed to perform as it should have; failures and successes provide valuable information in assessing effectiveness and determining means to improve. ',
'What is required to measure the performance or effectiveness of a SAR system?',
'What is the effect of decreasing track spacing on the area that can be searched?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7632 |
cosine_accuracy@3 | 0.9123 |
cosine_accuracy@5 | 0.9386 |
cosine_accuracy@10 | 0.9912 |
cosine_precision@1 | 0.7632 |
cosine_precision@3 | 0.3041 |
cosine_precision@5 | 0.1877 |
cosine_precision@10 | 0.0991 |
cosine_recall@1 | 0.7632 |
cosine_recall@3 | 0.9123 |
cosine_recall@5 | 0.9386 |
cosine_recall@10 | 0.9912 |
cosine_ndcg@10 | 0.8801 |
cosine_mrr@10 | 0.8442 |
cosine_map@100 | 0.8449 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7456 |
cosine_accuracy@3 | 0.9211 |
cosine_accuracy@5 | 0.9386 |
cosine_accuracy@10 | 0.9912 |
cosine_precision@1 | 0.7456 |
cosine_precision@3 | 0.307 |
cosine_precision@5 | 0.1877 |
cosine_precision@10 | 0.0991 |
cosine_recall@1 | 0.7456 |
cosine_recall@3 | 0.9211 |
cosine_recall@5 | 0.9386 |
cosine_recall@10 | 0.9912 |
cosine_ndcg@10 | 0.8757 |
cosine_mrr@10 | 0.8383 |
cosine_map@100 | 0.8389 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7281 |
cosine_accuracy@3 | 0.8947 |
cosine_accuracy@5 | 0.9386 |
cosine_accuracy@10 | 0.9561 |
cosine_precision@1 | 0.7281 |
cosine_precision@3 | 0.2982 |
cosine_precision@5 | 0.1877 |
cosine_precision@10 | 0.0956 |
cosine_recall@1 | 0.7281 |
cosine_recall@3 | 0.8947 |
cosine_recall@5 | 0.9386 |
cosine_recall@10 | 0.9561 |
cosine_ndcg@10 | 0.8515 |
cosine_mrr@10 | 0.8167 |
cosine_map@100 | 0.8197 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6842 |
cosine_accuracy@3 | 0.8596 |
cosine_accuracy@5 | 0.8947 |
cosine_accuracy@10 | 0.9386 |
cosine_precision@1 | 0.6842 |
cosine_precision@3 | 0.2865 |
cosine_precision@5 | 0.1789 |
cosine_precision@10 | 0.0939 |
cosine_recall@1 | 0.6842 |
cosine_recall@3 | 0.8596 |
cosine_recall@5 | 0.8947 |
cosine_recall@10 | 0.9386 |
cosine_ndcg@10 | 0.8139 |
cosine_mrr@10 | 0.7737 |
cosine_map@100 | 0.7778 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.614 |
cosine_accuracy@3 | 0.7456 |
cosine_accuracy@5 | 0.8246 |
cosine_accuracy@10 | 0.8947 |
cosine_precision@1 | 0.614 |
cosine_precision@3 | 0.2485 |
cosine_precision@5 | 0.1649 |
cosine_precision@10 | 0.0895 |
cosine_recall@1 | 0.614 |
cosine_recall@3 | 0.7456 |
cosine_recall@5 | 0.8246 |
cosine_recall@10 | 0.8947 |
cosine_ndcg@10 | 0.748 |
cosine_mrr@10 | 0.7018 |
cosine_map@100 | 0.7074 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 1,024 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 10 tokens
- mean: 133.58 tokens
- max: 512 tokens
- min: 7 tokens
- mean: 17.7 tokens
- max: 39 tokens
- Samples:
positive anchor The debriefing helps to ensure that all survivors are rescued, to attend to the physical welfare of each survivor, and to obtain information which may assist and improve SAR services. Proper debriefing techniques include:– due care to avoid worsening a survivor’s condition by excessive debriefing;– careful assessment of the survivor’s statements if the survivor is frightened or excited;– use of a calm voice in questioning;– avoidance of suggesting the answers when obtaining facts; and– explaining that the information requested is important for the success of the SAR operation, and possibly for future SAR operations.
What are some proper debriefing techniques used in SAR services?
Communicating with passengers is more difficult in remote areas where phone service may be inadequate or lacking. If phones do exist, calling the airline or shipping company may be the best way to check in and find out information. In more populated areas, local agencies may have an emergency evacuation plan or other useful plan that can be implemented.IE961E.indb 21 6/28/2013 10:29:55 AM
What is a good way to check in and find out information in remote areas where phone service may be inadequate or lacking?
Voice communication is the basis of telemedical advice. It allows free dialogue and contributes to the human relationship, which is crucial to any medical consultation. Text messages are a useful complement to the voice telemedical advice and add the reliability of writing. Facsimile allows the exchange of pictures or diagrams, which help to identify a symptom, describe a lesion or the method of treatment. Digital data transmissions (photographs or electrocardiogram) provide an objective and potentially crucial addition to descriptive and subjective clinical data.
What are the types of communication methods used in telemedical advice?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|
1.0 | 2 | 0.7826 | 0.8163 | 0.8230 | 0.6761 | 0.8359 |
2.0 | 4 | 0.7739 | 0.8218 | 0.8282 | 0.6939 | 0.8459 |
3.0 | 6 | 0.7740 | 0.8223 | 0.8409 | 0.7072 | 0.8457 |
4.0 | 8 | 0.7778 | 0.8197 | 0.8389 | 0.7074 | 0.8449 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.1.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 50
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for tessimago/bge-large-repmus-matryoshka
Base model
BAAI/bge-large-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.763
- Cosine Accuracy@3 on dim 768self-reported0.912
- Cosine Accuracy@5 on dim 768self-reported0.939
- Cosine Accuracy@10 on dim 768self-reported0.991
- Cosine Precision@1 on dim 768self-reported0.763
- Cosine Precision@3 on dim 768self-reported0.304
- Cosine Precision@5 on dim 768self-reported0.188
- Cosine Precision@10 on dim 768self-reported0.099
- Cosine Recall@1 on dim 768self-reported0.763
- Cosine Recall@3 on dim 768self-reported0.912