|
--- |
|
language: ko |
|
--- |
|
|
|
# KoELECTRA (Small Discriminator) |
|
|
|
Pretrained ELECTRA Language Model for Korean (`koelectra-small-discriminator`) |
|
|
|
For more detail, please see [original repository](https://github.com/monologg/KoELECTRA/blob/master/README_EN.md). |
|
|
|
## Usage |
|
|
|
### Load model and tokenizer |
|
|
|
```python |
|
>>> from transformers import ElectraModel, ElectraTokenizer |
|
|
|
>>> model = ElectraModel.from_pretrained("monologg/koelectra-small-discriminator") |
|
>>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-small-discriminator") |
|
``` |
|
|
|
### Tokenizer example |
|
|
|
```python |
|
>>> from transformers import ElectraTokenizer |
|
>>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-small-discriminator") |
|
>>> tokenizer.tokenize("[CLS] 한국어 ELECTRA를 공유합니다. [SEP]") |
|
['[CLS]', '한국어', 'E', '##L', '##EC', '##T', '##RA', '##를', '공유', '##합니다', '.', '[SEP]'] |
|
>>> tokenizer.convert_tokens_to_ids(['[CLS]', '한국어', 'E', '##L', '##EC', '##T', '##RA', '##를', '공유', '##합니다', '.', '[SEP]']) |
|
[2, 18429, 41, 6240, 15229, 6204, 20894, 5689, 12622, 10690, 18, 3] |
|
``` |
|
|
|
## Example using ElectraForPreTraining |
|
|
|
```python |
|
import torch |
|
from transformers import ElectraForPreTraining, ElectraTokenizer |
|
|
|
discriminator = ElectraForPreTraining.from_pretrained("monologg/koelectra-small-discriminator") |
|
tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-small-discriminator") |
|
|
|
sentence = "나는 방금 밥을 먹었다." |
|
fake_sentence = "나는 내일 밥을 먹었다." |
|
|
|
fake_tokens = tokenizer.tokenize(fake_sentence) |
|
fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") |
|
|
|
discriminator_outputs = discriminator(fake_inputs) |
|
predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2) |
|
|
|
print(list(zip(fake_tokens, predictions.tolist()[1:-1]))) |
|
``` |
|
|