Visualize in Weights & Biases

check

This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3991
  • Accuracy: 0.8258

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6863 1.0 613 0.6746 0.6165
0.5276 2.0 1226 0.4910 0.7723
0.4828 3.0 1839 0.4693 0.7847
0.4682 4.0 2452 0.4413 0.8038
0.4692 5.0 3065 0.4330 0.8071
0.4387 6.0 3678 0.4344 0.8055
0.428 7.0 4291 0.4109 0.8191
0.4266 8.0 4904 0.4069 0.8208
0.4191 9.0 5517 0.4031 0.8233
0.434 10.0 6130 0.3991 0.8258

Framework versions

  • PEFT 0.10.0
  • Transformers 4.41.0.dev0
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
300M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for thaisonatk/check

Adapter
(59)
this model