|
--- |
|
tags: |
|
- generated_from_trainer |
|
- summarize |
|
- pubmed |
|
- med |
|
datasets: |
|
- pubmed-summarization |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: fine-tuned-16384-pubmed |
|
results: [] |
|
language: |
|
- en |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# fine-tuned-16384-pubmed |
|
|
|
This model is fine-tuned on the pubmed-summarization dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3719 |
|
- Rouge1: 0.4602 |
|
- Rouge2: 0.2253 |
|
- Rougel: 0.2911 |
|
- Rougelsum: 0.4283 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 50 |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 12.7776 | 0.2667 | 50 | 9.5450 | 0.4552 | 0.2219 | 0.2848 | 0.4234 | |
|
| 7.2062 | 0.5333 | 100 | 4.6159 | 0.4564 | 0.2215 | 0.2874 | 0.4241 | |
|
| 4.0511 | 0.8 | 150 | 2.7224 | 0.4615 | 0.2222 | 0.2914 | 0.4287 | |
|
| 2.657 | 1.0667 | 200 | 1.7347 | 0.4597 | 0.2226 | 0.2921 | 0.4273 | |
|
| 1.7104 | 1.3333 | 250 | 1.0021 | 0.4583 | 0.2231 | 0.2918 | 0.4261 | |
|
| 0.9336 | 1.6 | 300 | 0.5423 | 0.4586 | 0.2228 | 0.2905 | 0.4259 | |
|
| 0.4902 | 1.8667 | 350 | 0.3719 | 0.4602 | 0.2253 | 0.2911 | 0.4283 | |
|
| 0.4032 | 2 | 400 | 0.2967 | 0.4718 | 0.2203 | 0.2871 | 0.4243 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.43.3 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.19.1 |