tiagomosantos commited on
Commit
3b3cd95
·
verified ·
1 Parent(s): feecf68

w2v-bert-2.0-pt_pt_v2

Browse files
Files changed (1) hide show
  1. README.md +71 -180
README.md CHANGED
@@ -1,199 +1,90 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
 
 
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
 
 
 
 
 
 
 
 
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
 
 
 
 
 
 
 
 
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: mit
3
+ base_model: facebook/w2v-bert-2.0
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - common_voice_16_1
8
+ metrics:
9
+ - wer
10
+ model-index:
11
+ - name: w2v-bert-2.0-pt_pt_v2
12
+ results:
13
+ - task:
14
+ name: Automatic Speech Recognition
15
+ type: automatic-speech-recognition
16
+ dataset:
17
+ name: common_voice_16_1
18
+ type: common_voice_16_1
19
+ config: pt
20
+ split: validation
21
+ args: pt
22
+ metrics:
23
+ - name: Wer
24
+ type: wer
25
+ value: 0.08315087821729188
26
  ---
27
 
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
 
31
+ # w2v-bert-2.0-pt_pt_v2
32
 
33
+ This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_16_1 dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.1282
36
+ - Wer: 0.0832
37
+ - Cer: 0.0224
38
+ - Bert Score: 0.9739
39
 
40
+ ## Model description
41
 
42
+ More information needed
43
 
44
+ ## Intended uses & limitations
45
 
46
+ More information needed
47
 
48
+ ## Training and evaluation data
49
 
50
+ More information needed
 
 
 
 
 
 
51
 
52
+ ## Training procedure
53
 
54
+ ### Training hyperparameters
55
 
56
+ The following hyperparameters were used during training:
57
+ - learning_rate: 5e-05
58
+ - train_batch_size: 16
59
+ - eval_batch_size: 8
60
+ - seed: 42
61
+ - gradient_accumulation_steps: 2
62
+ - total_train_batch_size: 32
63
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
64
+ - lr_scheduler_type: linear
65
+ - lr_scheduler_warmup_steps: 500
66
+ - num_epochs: 10
67
+ - mixed_precision_training: Native AMP
68
 
69
+ ### Training results
70
 
71
+ | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Bert Score |
72
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:----------:|
73
+ | 1.2735 | 1.0 | 678 | 0.2292 | 0.1589 | 0.0415 | 0.9498 |
74
+ | 0.1715 | 2.0 | 1356 | 0.1762 | 0.1283 | 0.0344 | 0.9599 |
75
+ | 0.1158 | 3.0 | 2034 | 0.1539 | 0.1100 | 0.0298 | 0.9646 |
76
+ | 0.0821 | 4.0 | 2712 | 0.1362 | 0.0949 | 0.0258 | 0.9703 |
77
+ | 0.0605 | 5.0 | 3390 | 0.1349 | 0.0860 | 0.0236 | 0.9728 |
78
+ | 0.0475 | 6.0 | 4068 | 0.1395 | 0.0871 | 0.0239 | 0.9728 |
79
+ | 0.0355 | 7.0 | 4746 | 0.1487 | 0.0837 | 0.0230 | 0.9739 |
80
+ | 0.0309 | 8.0 | 5424 | 0.1452 | 0.0873 | 0.0240 | 0.9728 |
81
+ | 0.0308 | 9.0 | 6102 | 0.1390 | 0.0843 | 0.0228 | 0.9735 |
82
+ | 0.0239 | 10.0 | 6780 | 0.1282 | 0.0832 | 0.0224 | 0.9739 |
83
 
 
84
 
85
+ ### Framework versions
86
 
87
+ - Transformers 4.38.2
88
+ - Pytorch 2.2.0
89
+ - Datasets 2.18.0
90
+ - Tokenizers 0.15.2