w2v-bert-2.0-pt_pt_v2
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the common_voice_16_1 Portuguese subset using 1XRTX 3090. It achieves the following results on the test set:
- Wer: 0.10491320595991134
- Cer: 0.032070871626631914
- Bert Score: 0.9619712047981167
- Sentence Similarity: 0.93867844
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Bert Score |
---|---|---|---|---|---|---|
1.2735 | 1.0 | 678 | 0.2292 | 0.1589 | 0.0415 | 0.9498 |
0.1715 | 2.0 | 1356 | 0.1762 | 0.1283 | 0.0344 | 0.9599 |
0.1158 | 3.0 | 2034 | 0.1539 | 0.1100 | 0.0298 | 0.9646 |
0.0821 | 4.0 | 2712 | 0.1362 | 0.0949 | 0.0258 | 0.9703 |
0.0605 | 5.0 | 3390 | 0.1349 | 0.0860 | 0.0236 | 0.9728 |
0.0475 | 6.0 | 4068 | 0.1395 | 0.0871 | 0.0239 | 0.9728 |
0.0355 | 7.0 | 4746 | 0.1487 | 0.0837 | 0.0230 | 0.9739 |
0.0309 | 8.0 | 5424 | 0.1452 | 0.0873 | 0.0240 | 0.9728 |
0.0308 | 9.0 | 6102 | 0.1390 | 0.0843 | 0.0228 | 0.9735 |
0.0239 | 10.0 | 6780 | 0.1282 | 0.0832 | 0.0224 | 0.9739 |
Evaluation results
Test Wer | Test Cer | Test Bert Score | Runtime | Samples per second |
---|---|---|---|---|
0.09146400542583083 | 0.02643665913309742 | 0.9702128323433327 | 266.8185 | 35.282 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.0
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for tiagomosantos/w2v-bert-2.0-pt_pt_v2
Base model
facebook/w2v-bert-2.0Evaluation results
- Wer on common_voice_16_1validation set self-reported0.083