tiagomosantos's picture
Update README.md
62a8b3b verified
metadata
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
  - asr
  - w2v-bert-2.0
datasets:
  - common_voice_16_1
metrics:
  - wer
  - cer
  - bertscore
model-index:
  - name: w2v-bert-2.0-pt_pt_v2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_16_1
          type: common_voice_16_1
          config: pt
          split: validation
          args: pt
        metrics:
          - name: Wer
            type: wer
            value: 0.08315087821729188
language:
  - pt

w2v-bert-2.0-pt_pt_v2

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the common_voice_16_1 Portuguese subset using 1XRTX 3090. It achieves the following results on the test set:

  • Wer: 0.10491320595991134
  • Cer: 0.032070871626631914
  • Bert Score: 0.9619712047981167
  • Sentence Similarity: 0.93867844

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer Bert Score
1.2735 1.0 678 0.2292 0.1589 0.0415 0.9498
0.1715 2.0 1356 0.1762 0.1283 0.0344 0.9599
0.1158 3.0 2034 0.1539 0.1100 0.0298 0.9646
0.0821 4.0 2712 0.1362 0.0949 0.0258 0.9703
0.0605 5.0 3390 0.1349 0.0860 0.0236 0.9728
0.0475 6.0 4068 0.1395 0.0871 0.0239 0.9728
0.0355 7.0 4746 0.1487 0.0837 0.0230 0.9739
0.0309 8.0 5424 0.1452 0.0873 0.0240 0.9728
0.0308 9.0 6102 0.1390 0.0843 0.0228 0.9735
0.0239 10.0 6780 0.1282 0.0832 0.0224 0.9739

Evaluation results

Test Wer Test Cer Test Bert Score Runtime Samples per second
0.09146400542583083 0.02643665913309742 0.9702128323433327 266.8185 35.282

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.0
  • Datasets 2.18.0
  • Tokenizers 0.15.2