File size: 3,113 Bytes
bb86f84
3b3cd95
 
 
 
f0ed21b
ebb8b0e
3b3cd95
 
 
 
336e989
 
3b3cd95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
768b94b
336e989
 
bb86f84
 
3b3cd95
 
bb86f84
3b3cd95
bb86f84
c111bab
f0ed21b
62a8b3b
 
 
 
bb86f84
3b3cd95
bb86f84
3b3cd95
bb86f84
3b3cd95
bb86f84
3b3cd95
bb86f84
3b3cd95
bb86f84
3b3cd95
bb86f84
3b3cd95
bb86f84
3b3cd95
bb86f84
3b3cd95
 
 
 
 
 
 
 
 
 
 
 
bb86f84
3b3cd95
bb86f84
3b3cd95
 
 
 
 
 
 
 
 
 
 
 
bb86f84
09ffb31
 
08d6d4d
 
 
bb86f84
3b3cd95
bb86f84
3b3cd95
 
 
336e989
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
- asr
- w2v-bert-2.0
datasets:
- common_voice_16_1
metrics:
- wer
- cer
- bertscore
model-index:
- name: w2v-bert-2.0-pt_pt_v2
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_16_1
      type: common_voice_16_1
      config: pt
      split: validation
      args: pt
    metrics:
    - name: Wer
      type: wer
      value: 0.08315087821729188
language:
- pt
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w2v-bert-2.0-pt_pt_v2

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_16_1 Portuguese subset using 1XRTX 3090.
It achieves the following results on the test set:
- Wer: 0.10491320595991134
- Cer: 0.032070871626631914
- Bert Score: 0.9619712047981167
- Sentence Similarity: 0.93867844

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    | Bert Score |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:----------:|
| 1.2735        | 1.0   | 678  | 0.2292          | 0.1589 | 0.0415 | 0.9498     |
| 0.1715        | 2.0   | 1356 | 0.1762          | 0.1283 | 0.0344 | 0.9599     |
| 0.1158        | 3.0   | 2034 | 0.1539          | 0.1100 | 0.0298 | 0.9646     |
| 0.0821        | 4.0   | 2712 | 0.1362          | 0.0949 | 0.0258 | 0.9703     |
| 0.0605        | 5.0   | 3390 | 0.1349          | 0.0860 | 0.0236 | 0.9728     |
| 0.0475        | 6.0   | 4068 | 0.1395          | 0.0871 | 0.0239 | 0.9728     |
| 0.0355        | 7.0   | 4746 | 0.1487          | 0.0837 | 0.0230 | 0.9739     |
| 0.0309        | 8.0   | 5424 | 0.1452          | 0.0873 | 0.0240 | 0.9728     |
| 0.0308        | 9.0   | 6102 | 0.1390          | 0.0843 | 0.0228 | 0.9735     |
| 0.0239        | 10.0  | 6780 | 0.1282          | 0.0832 | 0.0224 | 0.9739     |

### Evaluation results

| Test Wer           | Test Cer            | Test Bert Score   | Runtime | Samples per second    | 
|:------------------:|:-------------------:|:-----------------:|:-------:|:---------------------:|
| 0.09146400542583083| 0.02643665913309742 | 0.9702128323433327| 266.8185| 35.282                |

### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.0
- Datasets 2.18.0
- Tokenizers 0.15.2