|
--- |
|
license: mit |
|
base_model: facebook/w2v-bert-2.0 |
|
tags: |
|
- generated_from_trainer |
|
- asr |
|
- w2v-bert-2.0 |
|
datasets: |
|
- common_voice_16_1 |
|
metrics: |
|
- wer |
|
- cer |
|
- bertscore |
|
model-index: |
|
- name: w2v-bert-2.0-pt_pt_v2 |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: common_voice_16_1 |
|
type: common_voice_16_1 |
|
config: pt |
|
split: validation |
|
args: pt |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.08315087821729188 |
|
language: |
|
- pt |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# w2v-bert-2.0-pt_pt_v2 |
|
|
|
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_16_1 Portuguese subset using 1XRTX 3090. |
|
It achieves the following results on the test set: |
|
- Wer: 0.10491320595991134 |
|
- Cer: 0.032070871626631914 |
|
- Bert Score: 0.9619712047981167 |
|
- Sentence Similarity: 0.93867844 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Bert Score | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:----------:| |
|
| 1.2735 | 1.0 | 678 | 0.2292 | 0.1589 | 0.0415 | 0.9498 | |
|
| 0.1715 | 2.0 | 1356 | 0.1762 | 0.1283 | 0.0344 | 0.9599 | |
|
| 0.1158 | 3.0 | 2034 | 0.1539 | 0.1100 | 0.0298 | 0.9646 | |
|
| 0.0821 | 4.0 | 2712 | 0.1362 | 0.0949 | 0.0258 | 0.9703 | |
|
| 0.0605 | 5.0 | 3390 | 0.1349 | 0.0860 | 0.0236 | 0.9728 | |
|
| 0.0475 | 6.0 | 4068 | 0.1395 | 0.0871 | 0.0239 | 0.9728 | |
|
| 0.0355 | 7.0 | 4746 | 0.1487 | 0.0837 | 0.0230 | 0.9739 | |
|
| 0.0309 | 8.0 | 5424 | 0.1452 | 0.0873 | 0.0240 | 0.9728 | |
|
| 0.0308 | 9.0 | 6102 | 0.1390 | 0.0843 | 0.0228 | 0.9735 | |
|
| 0.0239 | 10.0 | 6780 | 0.1282 | 0.0832 | 0.0224 | 0.9739 | |
|
|
|
### Evaluation results |
|
|
|
| Test Wer | Test Cer | Test Bert Score | Runtime | Samples per second | |
|
|:------------------:|:-------------------:|:-----------------:|:-------:|:---------------------:| |
|
| 0.09146400542583083| 0.02643665913309742 | 0.9702128323433327| 266.8185| 35.282 | |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.0 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |