metacognitive-cls

This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1024
  • Accuracy: 0.9640
  • F1: 0.8326
  • Precision: 0.8742
  • Recall: 0.7947

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 9.946303722432942e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.6685 1.0 76 0.6265 0.7931 0.0543 0.0559 0.0528
0.45 2.0 152 0.2973 0.8983 0.3275 0.6410 0.2199
0.2947 3.0 228 0.2671 0.9069 0.4910 0.6385 0.3988
0.2561 4.0 304 0.2246 0.9234 0.5323 0.8516 0.3871
0.2201 5.0 380 0.1926 0.9442 0.6988 0.8909 0.5748
0.1896 6.0 456 0.1704 0.9439 0.6828 0.9385 0.5367
0.1574 7.0 532 0.1468 0.9515 0.7452 0.9110 0.6305
0.1203 8.0 608 0.1213 0.9591 0.8056 0.8653 0.7537
0.0924 9.0 684 0.1119 0.9634 0.8290 0.8734 0.7889
0.0771 10.0 760 0.1073 0.9620 0.8206 0.8767 0.7713
0.067 11.0 836 0.1016 0.9657 0.8415 0.8762 0.8094
0.0609 12.0 912 0.1024 0.9640 0.8326 0.8742 0.7947

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
13
Safetensors
Model size
435M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tiedaar/metacognitive-cls

Finetuned
(125)
this model

Space using tiedaar/metacognitive-cls 1