Falcon3
Collection
Falcon3 family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B parameters.
β’
40 items
β’
Updated
β’
75
Falcon3 family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B parameters.
This repository contains the Falcon3-1B-Instruct. It achieves strong results on reasoning, language understanding, instruction following, code and mathematics tasks. Falcon3-1B-Instruct supports 4 languages (English, French, Spanish, Portuguese) and a context length of up to 8K.
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "tiiuae/Falcon3-1B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many hours in one day?"
messages = [
{"role": "system", "content": "You are a helpful friendly assistant Falcon3 from TII, try to follow instructions as much as possible."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=1024
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
We report in the following table our internal pipeline benchmarks.
Category | Benchmark | Llama-3.2-1B | Qwen2.5-1.5B | SmolLM2-1.7B | Falcon3-1B-Instruct |
---|---|---|---|---|---|
General | MMLU (5-shot) | 23.4 | 58.4 | 48.4 | 43.9 |
MMLU-PRO (5-shot) | 11.3 | 21.3 | 17.2 | 18.6 | |
IFEval | 55.8 | 44.4 | 53.0 | 54.4 | |
Math | GSM8K (5-shot) | 37.4 | 57.2 | 43.4 | 38.6 |
GSM8K (8-shot, COT) | 35.6 | 62.2 | 47.2 | 41.8 | |
MATH Lvl-5 (4-shot) | 3.9 | 0.2 | 0.1 | 1.0 | |
Reasoning | Arc Challenge (25-shot) | 34.1 | 47.0 | 47.6 | 45.9 |
GPQA (0-shot) | 25.3 | 29.6 | 28.7 | 26.5 | |
GPQA (0-shot, COT) | 13.2 | 9.2 | 16.0 | 21.3 | |
MUSR (0-shot) | 32.4 | 36.8 | 33.0 | 40.7 | |
BBH (3-shot) | 30.3 | 38.5 | 33.1 | 35.1 | |
BBH (3-shot, COT) | 0.0 | 20.3 | 0.8 | 30.5 | |
CommonSense Understanding | PIQA (0-shot) | 72.1 | 73.2 | 74.4 | 72.0 |
SciQ (0-shot) | 61.8 | 69.5 | 71.4 | 86.8 | |
Winogrande (0-shot) | - | - | - | 60.2 | |
OpenbookQA (0-shot) | 40.2 | 40.4 | 42.8 | 40.0 | |
MT-Bench (avg) | 5.4 | 7.1 | 6.1 | 5.5 | |
Instructions following | Alpaca (WC) | 8.6 | 8.6 | 5.4 | 6.1 |
Coming soon....
If the Falcon3 family of models were helpful to your work, feel free to give us a cite.
@misc{Falcon3,
title = {The Falcon 3 Family of Open Models},
url = {https://huggingface.co/blog/falcon3},
author = {Falcon-LLM Team},
month = {December},
year = {2024}
}
Base model
tiiuae/Falcon3-1B-Base