Model card for FalconMamba Instruct model
Table of Contents
TL;DR
Model Details
Model Description
- Developed by: https://www.tii.ae
- Model type: Causal decoder-only
- Architecture: Mamba
- Language(s) (NLP): Mainly English
- License: TII Falcon-Mamba License 2.0
Check out the blogpost for more details!
Usage
Find below some example scripts on how to use the model in transformers
(Make sure to have the latest transformers, or the one built from source):
Using the Pytorch model
Running the model on a CPU
Click to expand
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b-instruct")
model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b-instruct")
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
outputs = model.generate(input_ids, max_new_tokens=30)
print(tokenizer.decode(outputs[0]))
Running the model on a GPU
Click to expand
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b-instruct")
model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b-instruct", device_map="auto")
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids, max_new_tokens=30)
print(tokenizer.decode(outputs[0]))
Running the model on a GPU using torch.compile
Click to expand
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b-instruct")
model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b-instruct", torch_dtype=torch.bfloat16).to(0)
model = torch.compile(model)
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids, max_new_tokens=30)
print(tokenizer.decode(outputs[0]))
Running the model on a GPU using different precisions
FP16
Click to expand
# pip install accelerate
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b-instruct")
model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b-instruct", device_map="auto", torch_dtype=torch.float16)
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids, max_new_tokens=30)
print(tokenizer.decode(outputs[0]))
4-bit
Click to expand
# pip install bitsandbytes accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-mamba-7b-instruct")
model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-mamba-7b-instruct", device_map="auto", quantization_config=BitsAndBytesConfig(load_in_4bit=True))
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids, max_new_tokens=30)
print(tokenizer.decode(outputs[0]))
Training Details
Training Data
Falcon-Mamba has been trained with ~ 5,500 GT mainly coming from Refined-Web, a large volume web-only dataset filtered and deduplicated. Similar to the others Falcon suite models, Falcon-Mamba has been trained leveraging a multi-stage training strategy to increase the context-length from 2,048 to 8,192. Moreover, inspired by the concept of Curriculum Learning, we carefully selected data mixtures throughout the training stages, considering both data diversity and complexity. Note that at inference the context-length is not relevant as the Mamba architecture has no limit on long range dependency. At the last training stage, small portion of high-quality curated data was used to further enhance performance.
Overall, the data sources included RefinedWeb-English, high quality technical data, code data and math data extracted from public sources. In particular, we used samples coming from Fineweb-edu during our last training stage.
The data was tokenized with the Falcon-7B/11B tokenizer.
After pre-training, the model has been further fine-tuned on instruction data.
Training Procedure
Falcon-Mamba-7B was trained on 256 H100 80GB GPUs for the majority of the training, using a 3D parallelism strategy (TP=1, PP=1, DP=256) combined with ZeRO.
Training Hyperparameters
Hyperparameter | Value | Comment |
---|---|---|
Precision | bfloat16 |
|
Optimizer | AdamW | |
Max learning rate | 6.4e-4 | Following a WSD (warmup-stable-decay) learning rate schedule |
Weight decay | 1e-1 | |
Batch size | 2048 |
The model was trained AdamW optimizer, WSD (warmup-stable-decay) learning rate schedule, and a batch size rampup from to during first 50 GT of training. In the stable phase we used maximal learning rate , and decayed it to the minimal value with exponential schedule over 500 GT. Also, we applied BatchScaling during the rampup β rescaling learning rate so that the Adam noise temperature is kept constant.
Speeds, Sizes, Times
The model training took roughly two months.
Evaluation
Benchmarks
We evaluate our model on all benchmarks of the new leaderboard's version using the lm-evaluation-harness
package, and then normalize the evaluation results with HuggingFace score normalization.
model name |
IFEval |
BBH |
MATH LvL5 |
GPQA |
MUSR |
MMLU-PRO |
Average |
---|---|---|---|---|---|---|---|
Pure SSM models | |||||||
FalconMamba-7B |
33.36 | 19.88 | 3.63 | 8.05 | 10.86 | 14.47 | 15.04 |
TRI-ML/mamba-7b-rw * |
22.46 | 6.71 | 0.45 | 1.12 | 5.51 | 1.69 | 6.25 |
Hybrid SSM-attention models | |||||||
recurrentgemma-9b |
30.76 | 14.80 | 4.83 | 4.70 | 6.60 | 17.88 | 13.20 |
Zyphra/Zamba-7B-v1 * |
24.06 | 21.12 | 3.32 | 3.03 | 7.74 | 16.02 | 12.55 |
Transformer models | |||||||
Falcon2-11B |
32.61 | 21.94 | 2.34 | 2.80 | 7.53 | 15.44 | 13.78 |
Meta-Llama-3-8B |
14.55 | 24.50 | 3.25 | 7.38 | 6.24 | 24.55 | 13.41 |
Meta-Llama-3.1-8B |
12.70 | 25.29 | 4.61 | 6.15 | 8.98 | 24.95 | 13.78 |
Mistral-7B-v0.1 |
23.86 | 22.02 | 2.49 | 5.59 | 10.68 | 22.36 | 14.50 |
Mistral-Nemo-Base-2407 (12B) |
16.83 | 29.37 | 4.98 | 5.82 | 6.52 | 27.46 | 15.08 |
gemma-7B |
26.59 | 21.12 | 6.42 | 4.92 | 10.98 | 21.64 | 15.28 |
Also, we evaluate our model on the benchmarks of the first leaderboard using lighteval
.
model name |
ARC |
HellaSwag |
MMLU |
Winogrande |
TruthfulQA |
GSM8K |
Average |
---|---|---|---|---|---|---|---|
Pure SSM models | |||||||
FalconMamba-7B * |
62.03 | 80.82 | 62.11 | 73.64 | 53.42 | 52.54 | 64.09 |
TRI-ML/mamba-7b-rw * |
51.25 | 80.85 | 33.41 | 71.11 | 32.08 | 4.70 | 45.52 |
Hybrid SSM-attention models | |||||||
recurrentgemma-9b ** |
52.00 | 80.40 | 60.50 | 73.60 | 38.60 | 42.60 | 57.95 |
Zyphra/Zamba-7B-v1 * |
56.14 | 82.23 | 58.11 | 79.87 | 52.88 | 30.78 | 60.00 |
Transformer models | |||||||
Falcon2-11B |
59.73 | 82.91 | 58.37 | 78.30 | 52.56 | 53.83 | 64.28 |
Meta-Llama-3-8B |
60.24 | 82.23 | 66.70 | 78.45 | 42.93 | 45.19 | 62.62 |
Meta-Llama-3.1-8B |
58.53 | 82.13 | 66.43 | 74.35 | 44.29 | 47.92 | 62.28 |
Mistral-7B-v0.1 |
59.98 | 83.31 | 64.16 | 78.37 | 42.15 | 37.83 | 60.97 |
gemma-7B |
61.09 | 82.20 | 64.56 | 79.01 | 44.79 | 50.87 | 63.75 |
Mostly, we took evaluation results from both leaderboards. For the models marked by star we evaluated the tasks internally, while for the models marked by two stars the results were taken from paper or model card.
Throughput
This model can achieve comparable throughput and performance compared to other transformer based models that use optimized kernels such as Flash Attention 2. Make sure to install the optimized Mamba kernels with the following commands:
pip install "causal-conv1d>=1.4.0" mamba-ssm
Refer to our FalconMamba blogpost for more details about performance evaluation.
Technical Specifications
Model Architecture and Objective
Falcon-Mamba-7B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token).
The model is based on the Mamba architecture (Gu et al., 2023).
Hyperparameter | Value | Comment |
---|---|---|
Layers | 64 | Number of layers |
d_model |
4096 | Hidden dimension |
d_state |
16 | The SSM state dimension |
Vocabulary | 65024 | Vocabulary Size |
Sequence length | 8192 | During the last training stages |
Compute Infrastructure
Hardware
Falcon-Mamba-7B was trained on AWS SageMaker, using on average 256 H100 80GB GPUs in 32 p5 instances.
Software
Falcon-Mamba-7B was trained on an internal distributed training codebase, Gigatron. It uses a 3D parallelism approach combined with ZeRO, high-performance Triton kernels.
Citation
You can use the following bibtex citation:
@misc{zuo2024falconmambacompetitiveattentionfree,
title={Falcon Mamba: The First Competitive Attention-free 7B Language Model},
author={Jingwei Zuo and Maksim Velikanov and Dhia Eddine Rhaiem and Ilyas Chahed and Younes Belkada and Guillaume Kunsch and Hakim Hacid},
year={2024},
eprint={2410.05355},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2410.05355},
}
- Downloads last month
- 12,204