metadata
tags:
- image-classification
- timm
- transformers
library_name: timm
license: apache-2.0
datasets:
- imagenet-1k
Model card for efficientnet_es_pruned.in1k
A EfficientNet-EdgeTPU image classification model. Knapsack pruned from existing weights.
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 5.4
- GMACs: 1.8
- Activations (M): 8.7
- Image size: 224 x 224
- Papers:
- Accelerator-aware Neural Network Design using AutoML: https://arxiv.org/abs/2003.02838
- EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks: https://arxiv.org/abs/1905.11946
- Knapsack Pruning with Inner Distillation: https://arxiv.org/abs/2002.08258
- Dataset: ImageNet-1k
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('efficientnet_es_pruned.in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'efficientnet_es_pruned.in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 24, 112, 112])
# torch.Size([1, 32, 56, 56])
# torch.Size([1, 48, 28, 28])
# torch.Size([1, 144, 14, 14])
# torch.Size([1, 192, 7, 7])
print(o.shape)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'efficientnet_es_pruned.in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 1280, 7, 7) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Model Comparison
Explore the dataset and runtime metrics of this model in timm model results.
Citation
@article{gupta2020accelerator,
title={Accelerator-aware neural network design using automl},
author={Gupta, Suyog and Akin, Berkin},
journal={arXiv preprint arXiv:2003.02838},
year={2020}
}
@inproceedings{tan2019efficientnet,
title={Efficientnet: Rethinking model scaling for convolutional neural networks},
author={Tan, Mingxing and Le, Quoc},
booktitle={International conference on machine learning},
pages={6105--6114},
year={2019},
organization={PMLR}
}
@article{aflalo2020knapsack,
title={Knapsack pruning with inner distillation},
author={Aflalo, Yonathan and Noy, Asaf and Lin, Ming and Friedman, Itamar and Zelnik, Lihi},
journal={arXiv preprint arXiv:2002.08258},
year={2020}
}
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}