MobileNetV4 pretrained weights
Collection
Weights for MobileNet-V4 pretrained in timm
•
17 items
•
Updated
•
18
A MobileNet-V4 image classification model. Trained on ImageNet-1k by Ross Wightman.
Trained with timm
scripts using hyper-parameters inspired by the MobileNet-V4 paper with timm
enhancements.
NOTE: So far, these are the only known MNV4 weights. Official weights for Tensorflow models are unreleased.
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('mobilenetv4_hybrid_medium.e500_r224_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'mobilenetv4_hybrid_medium.e500_r224_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 32, 112, 112])
# torch.Size([1, 48, 56, 56])
# torch.Size([1, 80, 28, 28])
# torch.Size([1, 160, 14, 14])
# torch.Size([1, 960, 7, 7])
print(o.shape)
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'mobilenetv4_hybrid_medium.e500_r224_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 960, 7, 7) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
@article{qin2024mobilenetv4,
title={MobileNetV4-Universal Models for the Mobile Ecosystem},
author={Qin, Danfeng and Leichner, Chas and Delakis, Manolis and Fornoni, Marco and Luo, Shixin and Yang, Fan and Wang, Weijun and Banbury, Colby and Ye, Chengxi and Akin, Berkin and others},
journal={arXiv preprint arXiv:2404.10518},
year={2024}
}
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}